If a^3+b^3+c^3-3abc=p(a^2+b^2+c^2-ab-bc-ca) than find the value of p.
Answers
Answered by
0
Answer:
(3abc)/(b+c+a)
Step-by-step explanation:
a^3+b^3+c^3-3abc=p(a^2+b^2+c^2-ab-bc-ca)
p=((a+b+c)(a^2+b^2+c^2)-3*a*b*c)/(a^2+b^2+c^2)(-ab-bc-ca)
=(a+b+c)(-3abc)/-(ab+bc+ca)
=(a+b+c)(-3abc)/-(a+b+c)(b+c+a)
=(3abc)/(b+c+a)
Answered by
0
Answer:
a³+b³+c³-3abc
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
Step-by-step explanation:
LHS = a³+b³+c³-3abc
= (a³+b³)+c³-3abc
= (a+b)³-3ab(a+b)+c³-3abc
/* By algebraic identity:
x³+y³+3xy(x+y)=(x+y)³
=> x³+y³ = (x+y)³-3xy(x+y) */
= [(a+b)³+c³]-3ab(a+b)-3abc
=[(a+b+c)³-3(a+b)c(a+b+c)]-3ab(a+b+c)
=(a+b+c)[(a+b+c)²-3(a+b)c-3ab]
=(a+b+c)[a²+b²+c²+2ab+2bc+2ca-3ac-3bc-3ab]
=(a+b+c)(a²+b²+c²-ab-bc-ca)
= RHS
Therefore,
a³+b³+c³-3abc
= (a+b+c)(a²+b²+c²-ab-bc-ca)
•••♪
Similar questions
English,
5 months ago
Social Sciences,
5 months ago
Math,
5 months ago
Math,
10 months ago
English,
10 months ago