Math, asked by neelamrai, 1 year ago

if a/3=b/4=c/7 then a+b+c/c

Answers

Answered by pooja2202
215
I think this is the ans.
Attachments:
Answered by hotelcalifornia
113

Answer:

The value of  \frac{(a+b+c)}{c} is found out to be 2.

To find:

The value of the given expression \frac{(a+b+c)}{c}=?

Solution:

Given terms are as follows:

\begin{array} { c } { \frac { a } { 3 } = \frac { b } { 4 } = \frac { c } { 7 } } \\\\ { \frac { a } { c } = \frac { 3 } { 7 } } \\\\ { \frac { b } { c } = \frac { 4 } { 7 } } \end{array}

Hence, the expression becomes

\begin{array} { c } { \frac { a + b + c } { c } = \left( \frac { a } { c } \right) + \left( \frac { b } { c } \right) + \left( \frac { c } { c } \right) } \\\\ { = \left( \frac { a } { c } \right) + \left( \frac { b } { c } \right) + 1 } \end{array}

Substituting the value of \frac{a}{c}=\frac{3}{7} and \frac{b}{c}=\frac{4}{7}  in the above derived equation, we get,

\begin{array} { l } { = \frac { 3 } { 7 } + \frac { 4 } { 7 } + 1 } \\\\ { = \frac { 3 + 4 } { 7 } + 1 } \\\\ { = \frac { 7 } { 7 } + 1 } \\\\ { 1 + 1 } \\\\ { = 2 } \end{array}

Therefore, the value of \frac{((a+b+c))}{c} is equal to be 2

Similar questions