Math, asked by shuptikumardas, 1 month ago

if a=3,b=5,c=7 then prove the above equation​

Attachments:

Answers

Answered by Anonymous
948

\large{\green{\underline{\underline{\mathcal{Given}}}}}

  • \bf{a=3}
  • \bf{b=5}
  • \bf{c=7}

\small{\orange{ \tt{\boxed{\underline{L.H.S=  \frac{5 log_{10}  \sqrt{b}   + 5 log_{10}3 -  log_{10}( {a}^{2}  {c}^{2}  \sqrt{ac} ) }{ log_{10}( \frac{ab}{c}  )}  \div  \frac{5}{2}}}}}}\\\sf{=  \frac{5 log_{10} {5}^{ \frac{1}{2} }  + 5 log_{10}3 -  log_{10}( {3}^{2}  {7}^{2}  \sqrt{3.7} ) }{ log_{10}( \frac{3.5}{7}  )}  \div  \frac{5}{2}}\\\\\sf{=   \frac{\frac{5}{2}  log_{10}5 + 5 log_{10}3 -  log_{10} {(3.7)}^{ \frac{5}{2} }  }{ log_{10} \frac{15}{7}  }  \div  \frac{5}{2}}\\\\\sf{=   \frac{\frac{5}{2} log_{10}5 + 5 log_{10} \sqrt{9}  -  \frac{5}{2}  log_{10}21}{ log_{10}\frac{15}{7}  }  \div  \frac{5}{2}}\\\\\\\sf{ =   \frac{\frac{5}{2} log_{10}5 + 5 log_{10}  {9}^{ \frac{1}{2} }  -  \frac{5}{2}  log_{10}21}{ log_{10}\frac{15}{7}  }  \div  \frac{5}{2}}\\\\\\\sf{=   \frac{\frac{5}{2} log_{10}5 +  \frac{5}{2}  log_{10}  9  -  \frac{5}{2}  log_{10}21}{ log_{10}\frac{15}{7}  }  \div  \frac{5}{2}}\\\\\\\sf{ =  \frac{ \frac{5}{2} log_{10} \frac{5 \times 9}{21}   }{ log_{10} \frac{15}{7}  }  \div  \frac{5}{2}}\\\\\\\sf{ =  \frac{ \frac{5}{2} ( log_{10}\frac{15}{7} ) }{( log_{10} \frac{15}{7})  }  \div  \frac{5}{2}} \\\\\\\sf{=  \frac{5}{2}  \times  \frac{2}{5}} \\\\\\\sf{= 1}\\\\\\\tt{\orange{\boxed{\underline{ = R.H.S}}}}

\begin{gathered}\:\:\:\:\small\underline{\green{\boxed{\tt{\:  \frac{5 log_{10}  \sqrt{b}   + 5 log_{10}3 -  log_{10}( {a}^{2}  {c}^{2}  \sqrt{ac} ) }{ log_{10}( \frac{ab}{c}  )}  \div  \frac{5}{2}\:=\:\bf{1}}}}}\end{gathered}


BrainIyMSDhoni: Great :)
Answered by lokeshnandigam69
2

Answer:

\large{\green{\underline{\underline{\mathcal{Given}}}}}

Given

\bf{a=3}a=3

\bf{b=5}b=5

\bf{c=7}c=7

\begin{gathered}\small{\orange{ \tt{\boxed{\underline{L.H.S= \frac{5 log_{10} \sqrt{b} + 5 log_{10}3 - log_{10}( {a}^{2} {c}^{2} \sqrt{ac} ) }{ log_{10}( \frac{ab}{c} )} \div \frac{5}{2}}}}}}\\\sf{= \frac{5 log_{10} {5}^{ \frac{1}{2} } + 5 log_{10}3 - log_{10}( {3}^{2} {7}^{2} \sqrt{3.7} ) }{ log_{10}( \frac{3.5}{7} )} \div \frac{5}{2}}\\\\\sf{= \frac{\frac{5}{2} log_{10}5 + 5 log_{10}3 - log_{10} {(3.7)}^{ \frac{5}{2} } }{ log_{10} \frac{15}{7} } \div \frac{5}{2}}\\\\\sf{= \frac{\frac{5}{2} log_{10}5 + 5 log_{10} \sqrt{9} - \frac{5}{2} log_{10}21}{ log_{10}\frac{15}{7} } \div \frac{5}{2}}\\\\\\\sf{ = \frac{\frac{5}{2} log_{10}5 + 5 log_{10} {9}^{ \frac{1}{2} } - \frac{5}{2} log_{10}21}{ log_{10}\frac{15}{7} } \div \frac{5}{2}}\\\\\\\sf{= \frac{\frac{5}{2} log_{10}5 + \frac{5}{2} log_{10} 9 - \frac{5}{2} log_{10}21}{ log_{10}\frac{15}{7} } \div \frac{5}{2}}\\\\\\\sf{ = \frac{ \frac{5}{2} log_{10} \frac{5 \times 9}{21} }{ log_{10} \frac{15}{7} } \div \frac{5}{2}}\\\\\\\sf{ = \frac{ \frac{5}{2} ( log_{10}\frac{15}{7} ) }{( log_{10} \frac{15}{7}) } \div \frac{5}{2}} \\\\\\\sf{= \frac{5}{2} \times \frac{2}{5}} \\\\\\\sf{= 1}\\\\\\\tt{\orange{\boxed{\underline{ = R.H.S}}}}\end{gathered}

L.H.S=

log

10

(

c

ab

)

5log

10

b

+5log

10

3−log

10

(a

2

c

2

ac

)

÷

2

5

=

log

10

(

7

3.5

)

5log

10

5

2

1

+5log

10

3−log

10

(3

2

7

2

3.7

)

÷

2

5

=

log

10

7

15

2

5

log

10

5+5log

10

3−log

10

(3.7)

2

5

÷

2

5

=

log

10

7

15

2

5

log

10

5+5log

10

9

2

5

log

10

21

÷

2

5

=

log

10

7

15

2

5

log

10

5+5log

10

9

2

1

2

5

log

10

21

÷

2

5

=

log

10

7

15

2

5

log

10

5+

2

5

log

10

9−

2

5

log

10

21

÷

2

5

=

log

10

7

15

2

5

log

10

21

5×9

÷

2

5

=

(log

10

7

15

)

2

5

(log

10

7

15

)

÷

2

5

=

2

5

×

5

2

=1

=R.H.S

\begin{gathered}\:\:\:\:\small\underline{\green{\boxed{\tt{\: \frac{5 log_{10} \sqrt{b} + 5 log_{10}3 - log_{10}( {a}^{2} {c}^{2} \sqrt{ac} ) }{ log_{10}( \frac{ab}{c} )} \div \frac{5}{2}\:=\:\bf{1}}}}}\end{gathered}

log

10

(

c

ab

)

5log

10

b

+5log

10

3−log

10

(a

2

c

2

ac

)

÷

2

5

=1

Similar questions