if a=3 d=4 sn =406 find the value n
Answers
Answered by
7
★ Given that,
- a = 3
- d = 4
- Sn = 406
★ To find,
- n = ?
By using sum of n terms of an AP...
☯ Sn = n/2 [ 2a + (n - 1)d ]
➡ 406 = n/2 [ 2(3) + (n - 1)4 ]
➡ 406 × 2 = n [ 6 + 4n - 4 ]
➡ 812 = n [ 2 + 4n ]
➡ 812 = 2n + 4n²
➡ 4n² + 2n - 812 = 0
➡ 2[2n² + n - 406 ] = 0
➡ 2n² + n - 406 = 0/2
➡ 2n² + n - 406 = 0
➡ 2n² + 29n - 28n - 406 = 0
➡ n(2n + 29) - 14(2n + 29) = 0
➡ (n - 14) (2n + 29) = 0
➡ n - 14 = 0 ; 2n + 29 = 0
➡ n = 0 + 14 ; 2n = 0 - 29
➡ n = 14 ; 2n = - 29
➡ n = 14 ; n = -29/2
Values of n can't be in fractions.So, n will be 14.
★ Verification :
Substitute the value of n in the formula.
➡ S14 = 14/2 [ 2(3) + (14 - 1)(4) ]
➡ S14 = 7 [ 6 + 13(4) ]
➡ S14 = 7 [ 6 + 52 ]
➡ S14 = 7 [ 58 ]
➡ S14 = 406.
Hence, it is verified...
Step-by-step explanation:
Similar questions