Physics, asked by venugopalkuna8912, 9 months ago

if A= 3 I CAP + 2J CAP AND B= I CAP -2J CAP +3K CAP , THEN FIND THE MAGNITUDE OF A +B AND A-B

Answers

Answered by Anonymous
3

\huge{\underline{\underline{\boxed{\mathfrak{\red{A}\green{n}\pink{s}\orange{w}\blue{e}{r}}}}}}

CORRECT QUESTION :

\sf \vec{A} \ = \ 3\hat{i} \ + \ 2\hat{j} and

\sf \vec{B} \ = \hat{i} \ - \ 2\hat{j} \ + \ 3\hat{k}. Then find the magnitude of A + B and A - B.

SOLUTION :

\implies \sf \vec{a} \ + \vec{b} \ = \ 3\hat{i} \ + \ 2\hat{j} \ + \ \hat{i} \ - \ 2\hat{j} \ + \ 3\hat{k}

\implies \sf 4\hat{i} \ + \ 3\hat{k}

Now,

Magnitude of \sf \vec{A} \ + \ \vec{B} \ = \ \sqrt{4^{2}} \ + \ 3^{2}

\implies \sqrt{16 \ + \ 9}

\implies \sqrt{25}

\implies 25

\implies \sf \vec{a} \ + \vec{b} \ = \ 3\hat{i} \ + \ 2\hat{j} \ - \ \hat{i} \ - \ 2\hat{j} \ + \ 3\hat{k}

\implies \sf 2\hat{i} \ + \ 4\hat{j} \ - \ 3\hat{k}

Now,

To find the magnitude of \sf \vec{A} \ - \ \vec{B}

\implies \sf \vec{A} \ - \ \vec{B} \ = \ \sqrt 2^{2} \ + \ 4^{2} \ + \ (-3)^{2}

\implies \sf \sqrt {4 \ + \ 16 \ + \ 9}

\implies \sf \sqrt{29}

Similar questions