if /A/=3,/p(A) /= ? solve this question correctly
Answers
Answer:
Distance between x1,y1 and x2,y2 is given by the formula :
(x2−x1)
2
+(y2−y1)
2
P ( x,y ) ---------- A ( 1, -3 )
P ( x,y ) ---------- B ( -2,2 )
Distance of PA : Distance of PB = 2:3
= 3 Distance PA = 2 Distance PB
\begin{gathered}3\sqrt{(x-1)^2+(y+3)^2}=2\sqrt{(x+2)^2+(y-2)^2}\\\\\texttt{Square\:both\:sides}\\\\\implies 9[x^2+1-2x+y^2+9+6y]=4[x^2+4x+4+y^2+4-4y]\\\\\implies 9[x^2+y^2+10-2x+6y]=4[x^2+y^2+4x+8-4y]\\\\\implies 9x^2+9y^2+90-18x+54y=4x^2+4y^2+16x+32-16y\\\\Transpose\:the\:values\:to\:the\:right\\\\\implies 5x^2+5y^2-34x+70y+58=0\\\end{gathered}
3
(x−1)
2
+(y+3)
2
=2
(x+2)
2
+(y−2)
2
Squarebothsides
⟹9[x
2
+1−2x+y
2
+9+6y]=4[x
2
+4x+4+y
2
+4−4y]
⟹9[x
2
+y
2
+10−2x+6y]=4[x
2
+y
2
+4x+8−4y]
⟹9x
2
+9y
2
+90−18x+54y=4x
2
+4y
2
+16x+32−16y
Transposethevaluestotheright
⟹5x
2
+5y
2
−34x+70y+58=0