Math, asked by adri24, 1 year ago

If a^(3-x) × b^5x = a^(5+x) × b^3x , show that x log (b/a) = log a.​

Answers

Answered by Swarup1998
4

Logarithmic problem

Given: a^{3-x}\times b^{5x}=a^{5+x}\times b^{3x}

To show: x\:log(b/a)=log(a)

Proof:

Given, a^{3-x}\times b^{5x}=a^{5+x}\times b^{3x}

\Rightarrow a^{3-x}\times a^{-(5+x)}=b^{3x}\times b^{-5x}

\Rightarrow a^{3-x}\times a^{-5-x}=b^{3x}\times b^{-5x}

\Rightarrow a^{3-x-5-x}=b^{3x-5x}

\Rightarrow a^{-2x-2}=b^{-2x}

\Rightarrow a^{x+1}=b^{x}

\Rightarrow a^{x}\times a=b^{x}

\Rightarrow b^{x}/a^{x}=a

\Rightarrow (b/a)^{x}=a

Taking log to both sides, we get

log(b/a)^{x}=log(a)

\Rightarrow x\:log(b/a)=log(a)

This completes the proof.

Result: x\:log(b/a)=log(a)

Similar questions