Math, asked by ashishpasumarthi, 9 months ago

If A = 30', C = 90°, c =7√3 then a + b​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{A=30^\circ,\;C=90^\circ,\;c=7\sqrt{3}}

\textbf{To find:}

\textsf{The value of a+b}

\textbf{Solution:}

\textsf{We know that,}

\mathsf{Sum\;of \;interior\;angles\;of \;triangle\;is\;180^\circ}

\implies\mathsf{B=60^\circ}

\mathsf{By\;Sine\;formula}

\mathsf{\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}}

\implies\mathsf{\dfrac{a}{sin30^\circ}=\dfrac{b}{sin60^\circ}=\dfrac{7\sqrt{3}}{sin90^\circ}}

\implies\mathsf{\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{\sqrt3}{2}}=\dfrac{7\sqrt{3}}{1}}

\implies\mathsf{2a=\dfrac{2b}{\sqrt3}=7\sqrt{3}}

\implies\mathsf{2a=7\sqrt{3}}

\implies\mathsf{a=\dfrac{7}{2}\sqrt{3}}

\mathsf{and}

\implies\mathsf{\dfrac{2b}{\sqrt3}=7\sqrt{3}}

\implies\mathsf{2b=7{\times}3}

\implies\mathsf{b=\dfrac{21}{2}}

\mathsf{Now,}

\mathsf{a+b}

\mathsf{=\dfrac{7}{2}\sqrt{3}+\dfrac{21}{2}}

\mathsf{=\dfrac{7}{2}(\sqrt{3}+3)}

\implies\boxed{\mathsf{a+b=\dfrac{7}{2}(\sqrt{3}+3)}}

\textbf{Find more:}

In ∆ABC, angle B=90°,AB=7√3cm, AC=14cm,BC=7cm, Find measure of angle A.​

https://brainly.in/question/33713448

If in a triangle abc angle a=pi/6 and b:c=2:sqrt3, find angle b

https://brainly.in/question/18930261

Similar questions