If A=30, prove that
sin2a = 2 tan A / (1 + tan2 A)
Answers
Answered by
0
Step-by-step explanation:
L.H.S. = sin 2A
Putting A = 30˚ in L.H.S. and R.H.S., we get
L.H.S. = sin 2 × 30˚= sin 60˚ = √3/2
R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2
= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)
= 2 × 3/√3 × 4 = √3/2
Hence,
L.H.S. = R.H.S.
Hence proved.
Answered by
0
2tanA/(1 + tan²A)
= 2 (sinA/cosA)/ (1 + sin²A/cos²A)
= (2 sinA/cosA)/(cos²A + sin²A)/cos²A
= (2sinA/cosA)/(1/cos²A)
= 2sinA.cosA
= sin2A hence proved,,
Similar questions
Science,
18 hours ago
Biology,
18 hours ago
Math,
1 day ago
CBSE BOARD X,
1 day ago
History,
8 months ago