if a =30 then verify that sin 2 a =2tan a /1+tansquare a
Answers
Answered by
1
Heyy dude your answer is here.....
a=30
sin2a=2tana/(1+tan^2a)
L.H.S.
sin2×30=sin60
L.H.S.=√3/2
Now
R.H.S.
2tana/1+tan^2a
There are two methods to solve this....
1st is
we know
sin2a=2tan/(1+ran^2a)......{Formula}
so
here answer is √3/2
And
2nd is
2tana/(1+tan^2a)
2sina/cosa/(1+sin^2a/cos^2a)
2sina/cosa/(sin^2a+cos^2a)/cos^2a
2sina/cosa/1/cos^2a
2sinacosa
sin2a=√3/2
Thus
L.H.S.=R.H.S.
a=30
sin2a=2tana/(1+tan^2a)
L.H.S.
sin2×30=sin60
L.H.S.=√3/2
Now
R.H.S.
2tana/1+tan^2a
There are two methods to solve this....
1st is
we know
sin2a=2tan/(1+ran^2a)......{Formula}
so
here answer is √3/2
And
2nd is
2tana/(1+tan^2a)
2sina/cosa/(1+sin^2a/cos^2a)
2sina/cosa/(sin^2a+cos^2a)/cos^2a
2sina/cosa/1/cos^2a
2sinacosa
sin2a=√3/2
Thus
L.H.S.=R.H.S.
Similar questions