Math, asked by BrainlyHelper, 1 year ago

If A = 30° and B = 60°, verify that
(i)sin (A + B) = sin A cos B + cos A sin B
(ii)cos (A + B) = cos A cos B − sin A sin B

Answers

Answered by nikitasingh79
10

SOLUTION :

(i) Given : A = 30°, B = 60°

Verify : Sin (A + B) = Sin A Cos B + Cos A Sin B

LHS = Sin (A + B)

On Substituting  A = 30° , B = 60° in LHS

= Sin (30° + 60°)  

= Sin 90°

= 1

[ sin 90°= 1]

LHS = 1

RHS = Sin A Cos B + Cos A Sin B

On Substituting  A = 30° , B = 60° in RHS

= Sin 30°  Cos 60°  + Cos 30°  Sin 60°

= ½ × ½ + √3/2× √3/2

[Sin 30°= ½ ,   Cos 60° = ½ , Cos 30° = √3/2, Sin 60°= √3/2]

= ¼ + ¾

= (1+3)/4

= 4/4 = 1

= 1

RHS = 1

LHS = RHS

Hence, Sin (A + B) = Sin A Cos B + Cos A Sin B

(ii)  Given : A = 30°, B = 60°

Verify : Cos (A + B) = Cos A Cos B – Sin A Sin B

LHS = Cos (A + B)

On Substituting  A = 30° , B = 60° in LHS

= Cos (30° + 60°)

= Cos 90° = 0

[ Cos 90° = 0]  

LHS = 0

RHS  = Cos A Cos B – Sin A Sin B

=  Cos 30° Cos 60° – Sin 30° Sin 60°

= √3/2 × ½  - ½ × √3/2

[Cos 30° = √3/2, Cos 60° = ½, Sin 30°= ½ ,Sin 60°= √3/2]

= √3/4 - √3/4 = 0

RHS = 0

LHS = RHS = 0

Hence, Cos (A + B) = Cos A Cos B – Sin A Sin B

HOPE THIS ANSWER WILL HELP YOU…


firoj25: nice
Answered by Anonymous
8
Hlo mate :-

Solution :-

________________________________________________________________________________________________________________________


☆ Given,
A = 60° , B = 30°

● Now

sin(A - B) = sinA cos B - cos A sin B.

:- puting A = 60 , B = 30°

sin(60 - 30 ) = sin60cos30- cos 60sin 30


●We know, Trigonometry ratios of particular angles : sin90 = 1 , sin30 = 1/2 , sin60 = √3/2 , cos30 = √3/2 , cos60 = 1/2

sin30 = √3/2 ( √3/2 ) - 1/2 ( 1/2 )

1/2 = 3/4 - 1/4

1 /2= 2/4

1/2 = 1/2

Both Sides of the equation are equal.

Hence, We proved and verified that sin(A - B) = sinA cos B - cos A sin B. holds good for A = 60, B = 30°

________________________________________________________________________________________________________________________
Similar questions