If A = 300 , find sin 2 A, tan 2 A
Answers
Step-by-step explanation:
L.H.S. = sin 2A
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we get
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)= 2 × 3/√3 × 4 = √3/2Hence,L.H.S. = R.H.S.
L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)= 2 × 3/√3 × 4 = √3/2Hence,L.H.S. = R.H.S.Hence proved.
Answer:
Hello.
Step-by-step explanation:
Good afternoon...