Math, asked by laya18, 5 months ago

If A = 300 , find sin 2 A, tan 2 A​

Answers

Answered by AbhinavRocks10
4

Step-by-step explanation:

L.H.S. = sin 2A

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we get

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)= 2 × 3/√3 × 4 = √3/2Hence,L.H.S. = R.H.S.

L.H.S. = sin 2APutting A = 30˚ in L.H.S. and R.H.S., we getL.H.S. = sin 2 × 30˚= sin 60˚ = √3/2R.H.S. = 2 × tan 30˚/1 + tan2 30˚ = (2 × 1/√3)/(1 + (1/√3)2= (2/√3)/(1 + 1/3) = (2/√3)/(4/3)= 2 × 3/√3 × 4 = √3/2Hence,L.H.S. = R.H.S.Hence proved.


abhinav88876: Thanks ❤
AbhinavRocks10: WELCOME: D
Answered by Anonymous
0

Answer:

Hello.

Step-by-step explanation:

Good afternoon...

Similar questions