Math, asked by ariana915, 10 months ago

if A=30° prove that : 1+ sin 2 A+cos 2 A/sin A + cos A =2cos A​

Answers

Answered by avantiraj999
1

Step-by-step explanation:

R.H.S

2cos30° =2×√3/2=√3

L.H.S

 \:  \:  \frac{1 +  \sin(2a) +  \cos(2a)  }{ \sin(a) +  \cos(a)  }  \\  =  >  \frac{1 +  \sin(2 \times 30)  +  \cos(2 \times 30) }{ \sin(30) +  \cos(30)  }  \\  =  >  \frac{1 +  \sin(60) +  \cos(60)  }{ \sin(30) +  \cos(30)  }  \\  =  >  \frac{1 +  \frac{ \sqrt{3} }{2}  +  \frac{1}{2} }{ \frac{1}{2}  +  \frac{ \sqrt{3} }{2} }  \\  =  >  \frac{ \frac{2 +  \sqrt{3}  + 1}{2} }{ \frac{1 +  \sqrt{3} }{2} }  \\  =  >  \frac{3 +   \sqrt{3}  }{2}  \times  \frac{2}{1 +  \sqrt{3} }  \\  =  >  \frac{3 +  \sqrt{3} }{1 +  \sqrt{3} }  \\  =  >  \frac{3 +  \sqrt{3} }{ \sqrt{3 }   + 1}  \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3} - 1 }  \\  =  >  \frac{3( \sqrt{3}   -  1) +  \sqrt{3} ( \sqrt{3} - 1 }{ { \sqrt{3}  \: }^{2}  - 1}  \\  =  >  \frac{3 \sqrt{3}  -  3 + 3 -   \sqrt{3} }{3 - 1}  \\  =  >   \frac{3 \sqrt{3} -  \sqrt{3} - 3 + 3  }{2}  \\  =  >  \frac{2 \sqrt{3} }{2}  \\  =  >  \sqrt{3}  \\

Hence

Proved.

Similar questions