If A=30° , prove that :
(sin A - cos A)^2 = 1 - sin 2 A
Answers
Answered by
0
Step-by-step explanation:
Given=©
A=30°
Expression=©
(SinA-CosA)²=1-Sin2A
Solution=®
L.H.S.
=> (SinA-CosA)²
=>Sin²A+Cos²A-2SinACosA
[ By Sin2A= 2SinACosA]
=>1-Sin2A
As L.H.S. = R.H.S.
Hence Proved
Answered by
4
Answer:
Step-by-step explanation:
From LHS
(sin30°-cos30°) ^2
(1/2-√3/2) ^2
(1/2) ^2+(√3/2)^2-2*1/2*√3/2
1/4+3/4-√3/2
1+3-2√3/4
4-2√3/4
2(2-√3) /4
2-√3/4
From RHS
1-sin2*30°
1-sin60°
1-√3/2
2-√3/2
LHS=RHS proved..
Similar questions