Math, asked by tanvirahmedtowkir, 11 months ago

if A=30°, then proof
(1+2tanA.cosA÷sinA+cosA) + (1-sinA.cosA÷sinA-cosA)= 1​

Answers

Answered by Anonymous
1

 \frac{1 + 2 \times  \frac{1}{ \sqrt{3} } \times  \frac{ \sqrt{3} }{2}  }{ \frac{1}{2}  +  \frac{ \sqrt{3} }{2} }  +  \frac{1 -  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2} }{ \frac{1}{2}  -  \frac{ \sqrt{3} }{2} }  \\  \\  =  >  \frac{2}{ \frac{1}{2}  +  \frac{ \sqrt{3} }{2} }  +  \frac{ \frac{4 -  \sqrt{3} }{4} }{ \frac{1}{2}  -  \frac{ \sqrt{3} }{2} }  \\  \\  =  >  \frac{4}{1 +  \sqrt{3} }  +  \frac{2(4 -  \sqrt{3}) }{4( 1 -  \sqrt{3}) }  \\  \\  =  >   \frac{4}{1 +  \sqrt{3} }   -   \frac{4 -  \sqrt{3} }{2( \sqrt{3} -  1 )}  \\  \\  =  >  \frac{8 \sqrt{3}  - 8 - (4 -  \sqrt{3})(1 +  \sqrt{3}  )}{2(3- 1)}  \\  \\  =  >  \frac{8 \sqrt{3} - 8 - (4 + 4 \sqrt{3}   -  \sqrt{3}  - 3)}{4}  \\  \\  =  >  \frac{8 \sqrt{3}  - 8 - 3 \sqrt{3} - 1 }{4}  \\  \\  =  >  \frac{5 \sqrt{3}  - 7}{4}

I hope it will be helpful for you ✌️✌️

Mark it as brainliest and...

Fóllòw ☺️☺️

Similar questions