Math, asked by yasmine2511, 5 months ago

if A=30°,then prove that sin 2A=2sinAcosA=(2tanA)/(1+tan^2A​

Answers

Answered by MagicalBeast
8

GIVEN :

A = 30°

To prove :

sin2A = 2sinAcosA = (2tanA) ÷ (1+tan²A)

Solution :

We will have to find individual value of sin2A , 2sinAcosA & (2tanA) ÷ (1+tan²A) .

➝ sin 2A

= sin 2(30°)

= sin 60°

= (√3)/2

_______________________________________________

➝ 2sinA cosA

= 2 × (sin 30°) × (cos 30°)

= 2 × (1/2) × (√3)/2

= (√3)/2

_______________________________________________

➝ (2tanA) ÷ (1+tan²A)

\sf \implies \:  \dfrac{2 \times  \tan( {30}^{ \circ} ) }{1 +  { \tan( {30}^{ \circ} ) }^{2} }  \\  \\ \sf \implies \:  \dfrac{2 \times  \dfrac{1}{ \sqrt{3} } }{1 +  {  \bigg  \{ \: \dfrac{1}{ \sqrt{3} }  \bigg\} }^{2} }  \\  \\ \sf \implies \:  \dfrac{ \dfrac{2}{ \sqrt{3} } }{1 +  \dfrac{1}{3} }  \\  \\ \sf \implies \:  \dfrac{  \dfrac{2}{ \sqrt{3} } }{ \dfrac{(3 + 1)}{3} } \\  \\ \sf \implies \:  \dfrac{2}{ \sqrt{3} }  \times  \dfrac{3}{4} \\  \\ \sf \implies \:  \dfrac{ \sqrt{3} }{2}

_______________________________________________

From above , it is clear that ,

sin2A = 2 sinA cosA = (2tanA) ÷ (1+tan²A) = (√3)/2

Hence PROVED.

Attachments:
Similar questions