if A=30°,then prove that sin 2A=2sinAcosA=(2tanA)/(1+tan^2A
Answers
Answered by
8
GIVEN :
A = 30°
To prove :
sin2A = 2sinAcosA = (2tanA) ÷ (1+tan²A)
Solution :
We will have to find individual value of sin2A , 2sinAcosA & (2tanA) ÷ (1+tan²A) .
➝ sin 2A
= sin 2(30°)
= sin 60°
= (√3)/2
_______________________________________________
➝ 2sinA cosA
= 2 × (sin 30°) × (cos 30°)
= 2 × (1/2) × (√3)/2
= (√3)/2
_______________________________________________
➝ (2tanA) ÷ (1+tan²A)
_______________________________________________
From above , it is clear that ,
sin2A = 2 sinA cosA = (2tanA) ÷ (1+tan²A) = (√3)/2
Hence PROVED.
Attachments:
Similar questions