If A=30° verify that:
tan2A=2tanA/1-tan2A
sushilkumaragr468:
Are you sexy
Answers
Answered by
4
Given to verify : tan2A = 2 tan A / 1 - tan²A
If A = 30°
1) tan 2A = tan(2*30) = tan60 = √3 [ T - Ratio of 60° , π/3 ]
2) tanA = tan30 = 1/√3
Now,
Given equation to verify : tan2A = 2 tan A / 1 - tan²A
==================================
Finding the value of tan2A
= tan60
= √3
==================================
Finding the value of 2 tan A / 1 - tan²A
= 2 tan30 / 1 +tan²30
= 2(1/√3 ) / 1 - (1/√3)²
= 2/√3 / ( 1 - 1/3 )
= 2/√3 / 2/3
= 2/√3 * 3/2
= 3/√3
= √3
==================================
Here, We observe that tan2A = 2 tan A / 1 - tan²A
Hence proved that, tan2A = 2 tan A / 1 - tan²A for A = 30°
If A = 30°
1) tan 2A = tan(2*30) = tan60 = √3 [ T - Ratio of 60° , π/3 ]
2) tanA = tan30 = 1/√3
Now,
Given equation to verify : tan2A = 2 tan A / 1 - tan²A
==================================
Finding the value of tan2A
= tan60
= √3
==================================
Finding the value of 2 tan A / 1 - tan²A
= 2 tan30 / 1 +tan²30
= 2(1/√3 ) / 1 - (1/√3)²
= 2/√3 / ( 1 - 1/3 )
= 2/√3 / 2/3
= 2/√3 * 3/2
= 3/√3
= √3
==================================
Here, We observe that tan2A = 2 tan A / 1 - tan²A
Hence proved that, tan2A = 2 tan A / 1 - tan²A for A = 30°
Answered by
1
hope it will help uh ...
nd plz mark as brainliest ...
Attachments:
Similar questions