Math, asked by rehanshaikh921, 11 months ago

if a = 3i - j + 4k.b = 2i + 3j - k and c = 5i + 2j + 3k than ā.(ā×b)

Answers

Answered by presentmoment
2

\bar{a}\cdot (\bar{b}\times \bar{c}) = 110

Step-by-step explanation:

The correct question is:

If \bar{a}=3 \hat{i}-\hat{j}+4 \hat{k}, \bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}, \bar{c}=-5 \hat{i}+2 \hat{j}+3 \hat{k}, then \bar{a} \cdot(\bar{b} \times \bar{c}) = ____.

Given data:

\bar{a}=3 \hat{i}-\hat{j}+4 \hat{k}

\bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}

\bar{c}=-5 \hat{i}+2 \hat{j}+3 \hat{k}

To find \bar{a} \cdot(\bar{b} \times \bar{c}):

Put a, b and c values in 1st, 2nd and 3rd rows of matrix determinant.

\bar{a} \cdot(\bar{b} \times \bar{c})=\left|\begin{array}{ccc}3 & -1 & 4 \\2 & 3 & -1 \\-5 & 2 & 3\end{array}\right|

              =3\left|\begin{array}{cc}3 & -1 \\2 & 3 \end{array}\right| -(-1) \left|\begin{array}{cc}2 & -1 \\-5 & 3 \end{array}\right| + 4 \left|\begin{array}{cc}2 & 3 \\-5 & 2 \end{array}\right|

Matrix formula:

\left|\begin{array}{cc}a & b \\c & d \end{array}\right| = ad-bc

            =3(3 \cdot 3-(-1) \cdot 2) -(-1)(2 \cdot 3-(-1)(-5))+4(2 \cdot 2-3(-5))

            = 3(9 + 2) + 1(6 – 5) + 4(4 + 15)

            = 3(11) +1(1) + 4(19)

            = 33 + 1 + 76

            = 110

Hence \bar{a}\cdot (\bar{b}\times \bar{c}) = 110.

Similar questions