Math, asked by tanwartripti7, 2 days ago

if a (4,1),b(-2,3)and c(0,5)and vertices of triangle abc and ad is its median then the length of side ab is​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{Vertices of triangle ABC are }

\mathsf{A(4,1),B(-2,3),C(0,5)\;and\;AD\;is\;its\;median}

\underline{\textbf{To find:}}

\textsf{Length of the median AD}

\underline{\textbf{Solution:}}

\textsf{Since D is the midpoint of BC,}

\mathsf{D\;is\;\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}

\mathsf{D\;is\;\left(\dfrac{-2+0}{2},\dfrac{3+5}{2}\right)}

\mathsf{D\;is\;\left(\dfrac{-2}{2},\dfrac{8}{2}\right)}

\mathsf{D\;is\;(-1,4)}

\textsf{Length of the median AD}

\mathsf{=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{=\sqrt{(4+1)^2+(1-4)^2}}

\mathsf{=\sqrt{5^2+(-3)^2}}

\mathsf{=\sqrt{25+9}}

\mathsf{=\sqrt{34}\;units}

\therefore\mathsf{Length\;of\;the\;median\;AD\;is\;\sqrt{34}\;units}

\underline{\textbf{Find more:}}

Similar questions