if A (4,1) B (5,4) find equation of locus of point P if PA^2=3PB^2
Answers
Answered by
54
Let P(x, y) be any point on the locus.
PA² = (x-4)² + (y-1)²
PA² = x² + 16 - 8x + y² + 1 - 2y
PA² = x² + y² - 8x - 2y + 17
PB² = (x-5)² + (y-4)²
PB² = x² + 25 - 10x + y² + 16 - 8y
PB² = x² + y² - 10x - 8y + 41
3PB² = 3 ( x² + y² - 10x - 8y + 41)
3PB² = 3x² + 3y² - 30x - 24y + 123
Now, Given equation is PA² = 3PB²
⇒ x² + y² - 8x - 2y + 17 = 3x² + 3y² - 30x - 24y + 123
⇒ 3x² + 3y² - 30x - 24y + 123 - ( x² + y² - 8x - 2y + 17) = 0
⇒2x² + 2y² - 22x - 22y + 106 = 0
Therefore, The equation of the locus is 2x² + 2y² - 22x - 22y + 106 = 0
Similar questions
Accountancy,
6 months ago
English,
6 months ago
Geography,
1 year ago
Math,
1 year ago
Math,
1 year ago