Math, asked by aayusharshit009, 1 month ago

If a = 4 + √15 ,find the value of a - 1/a​

Answers

Answered by Yuseong
11

 \Large {\underline { \sf {Answer :}}}

2√15

 \Large {\underline { \sf {Clarification :}}}

Here, we are provided with the value of a, that is :

  •  \sf {a = 4 + \sqrt{15} }

We are asked to calculate the value of :

  •  \sf {a- \dfrac{1}{a} }

Step 1 : Firstly we'll write 1/a in terms of a.

Step 2 : After that, we'll rationalise the denominator of it.

Step 3 : After rationalising the denominator, we'll add a and 1/a as usually we perform the subtraction.

How to rationalise the denominator?

  • In order to rationalise the denominator of any fraction, we multiply the rationalising factor of the denominator with both the denominator and the numerator of the fraction.

 \Large {\underline { \sf {Explication \; of \; steps :}}}

Here,

\longrightarrow \sf {a = 4 + \sqrt{15} }

Let it be the equation 1.

Therefore,

\longrightarrow \sf {\dfrac{1}{a} = \dfrac{1}{4 + \sqrt{15}} }

Rationalising the denominator of the above fraction :

  • Rationalising factor of (4+15) is (4-15)

Multiplying (4-√15) with both the numerator and the denominator.

\longrightarrow \sf {\dfrac{1}{a} = \dfrac{1}{4 + \sqrt{15}} \times \dfrac{4 - \sqrt{15}}{4 - \sqrt{15}}} \\

\longrightarrow \sf {\dfrac{1}{a} = \dfrac{1}{4 + \sqrt{15}} \times \dfrac{4 - \sqrt{15}}{4 - \sqrt{15}}} \\

\longrightarrow \sf {\dfrac{1}{a} =\dfrac{1(4 - \sqrt{15})}{(4 + \sqrt{15})(4 - \sqrt{15}) } } \\

\longrightarrow \sf {\dfrac{1}{a} =\dfrac{4 - \sqrt{15}}{(4+ \sqrt{15})(4 - \sqrt{15}) } } \\

Now, we know that,

  •  \sf{ (a+b)(a-b) = a^2 - b^2}

\longrightarrow \sf {\dfrac{1}{a} =\dfrac{4 - \sqrt{15}}{ (4)^2 - (\sqrt{15})^2 } } \\

\longrightarrow \sf {\dfrac{1}{a} =\dfrac{4 - \sqrt{15}}{ 16 - 15 } } \\

\longrightarrow \sf { \dfrac{1}{a} = 4 - \sqrt{15} \dots \mathfrak {(eq.\; 2)}}\\

Now,

\longrightarrow \sf {a- \dfrac{1}{a} }

Substituting the values from equation 1 and equation 2.

\longrightarrow \sf {(4+\sqrt{15})-  (4 - \sqrt{15})} \\

\longrightarrow \sf {4+\sqrt{15}-  4 + \sqrt{15}} \\

\longrightarrow \sf {\sqrt{15}+ \sqrt{15}} \\

\longrightarrow\underline{ \boxed{\sf {2\sqrt{15}}}} \; \bigstar \\

 \therefore The required answer is 215.

Similar questions