Math, asked by hag25, 19 days ago

If A = |(4,-2) (3,-5)| then express A as sum of a symmetric and skew symmetric matrix​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given matrix A,

\rm :\longmapsto\:A = \begin{bmatrix} 4 &  - 2\\ 3 &  - 5\end{bmatrix}

Now, we know,

\rm :\longmapsto\:A = \dfrac{1}{2} \times 2A

 \rm \:  = \:  \dfrac{1}{2}\bigg[A + A\bigg]

 \rm \:  = \:  \dfrac{1}{2}\bigg[A + A + A' - A'\bigg]

 \rm \:  = \:  \dfrac{1}{2}\bigg[(A + A' ) + (A- A')\bigg]

\rm \:  =  \: \dfrac{1}{2}[A + A'] + \dfrac{1}{2}[A - A']

Let assume that,

\rm :\longmapsto\:A = P + Q

where,

\boxed{ \bf{ \:P =  \frac{1}{2}[A + A']}}

and

\boxed{ \bf{ \:Q =  \frac{1}{2}[A  -  A']}}

Now,

\rm :\longmapsto\:A = \begin{bmatrix} 4 &  - 2\\ 3 &  - 5\end{bmatrix}

so,

\rm :\longmapsto\:A' = \begin{bmatrix} 4 & 3\\  - 2 &  - 5\end{bmatrix}

So,

\rm :\longmapsto\:A + A'

\rm \:  =  \: \begin{bmatrix} 4 &  - 2\\ 3 &  - 5\end{bmatrix} + \begin{bmatrix} 4 & 3\\  - 2 &  - 5\end{bmatrix}

\rm \:  =  \: \begin{bmatrix} 8 & 1\\ 1 &  - 10\end{bmatrix}

So,

\rm :\longmapsto\:P = \dfrac{1}{2}\bigg[A + A'\bigg]

\rm :\longmapsto\:P  =  \: \frac{1}{2}  \begin{bmatrix} 8 & 1\\ 1 &  - 10\end{bmatrix}

\rm :\longmapsto\:P  =  \:   \begin{bmatrix} 4 &  \dfrac{1}{2}  \\ \\  \dfrac{1}{2}  &  -5\end{bmatrix}

So,

\rm :\longmapsto\:P'  =  \:   \begin{bmatrix} 4 &  \dfrac{1}{2}  \\ \\  \dfrac{1}{2}  &  -5\end{bmatrix}

\bf\implies \:P' = P

\bf\implies \:P \: is \: symmetric.

Now, Consider,

\rm :\longmapsto\:A  -  A'

\rm \:  =  \: \begin{bmatrix} 4 &  - 2\\ 3 &  - 5\end{bmatrix}  - \begin{bmatrix} 4 & 3\\  - 2 &  - 5\end{bmatrix}

\rm \:  =  \: \begin{bmatrix} 0 &  - 5\\ 5 & 0\end{bmatrix}

So,

\rm :\longmapsto\:Q = \dfrac{1}{2}\bigg[A  -  A'\bigg]

\rm :\longmapsto\:Q=  \: \frac{1}{2}  \begin{bmatrix} 0 &  - 5\\ 5 & 0\end{bmatrix}

\rm :\longmapsto\:Q=  \:   \begin{bmatrix} 0 &  -  \dfrac{5}{2} \\  \\  \dfrac{5}{2}  & 0\end{bmatrix}

So,

\rm :\longmapsto\:Q'=  \:   \begin{bmatrix} 0 &  \dfrac{5}{2} \\  \\   - \dfrac{5}{2}  & 0\end{bmatrix}

\rm :\longmapsto\:Q'=  \:   -  \:  \begin{bmatrix} 0 &   - \dfrac{5}{2} \\  \\   \dfrac{5}{2}  & 0\end{bmatrix}

\bf\implies \:Q' =  -  \: Q

\bf\implies \:Q \: is \: skew \: symmetric

Hence,

\rm :\longmapsto\:P  =  \:   \begin{bmatrix} 4 &  \dfrac{1}{2}  \\ \\  \dfrac{1}{2}  &  -5\end{bmatrix}

and

\rm :\longmapsto\:Q=  \:   \begin{bmatrix} 0 &  -  \dfrac{5}{2} \\  \\  \dfrac{5}{2}  & 0\end{bmatrix}

Therefore,

 \:  \:  \:  \:  \:  \: \boxed{ \bf{ \: \begin{bmatrix} 4 &  \dfrac{1}{2}  \\ \\  \dfrac{1}{2}  &  -5\end{bmatrix} + \begin{bmatrix} 0 &  -  \dfrac{5}{2} \\  \\  \dfrac{5}{2}  & 0\end{bmatrix} = \begin{bmatrix} 4 &  - 2\\ 3 &  - 5\end{bmatrix}}}

Similar questions