Math, asked by Zui25, 3 months ago

If A(4, 2), B(6, 5) and C(1, 4) be the vertices of triangle ABC and AD is a median,  then find the coordinates of D.​

Answers

Answered by Anonymous
6

\pink{\boxed{\underline{EXPLANATION}}}

GIVEN THAT:

➲ A(4,2), B(6,5), and C(1,4) be the vertices of triangle ABC.

➲ AD is a median.

FORMULA:

To find the coordinate of med point of a line whose vertices have been given.

➡ \: x \: coordinate \:  =  \frac{x1 + x2}{2}  \\  \\ ➡ \: y \: coordinate \:  =  \frac{y1 + y2}{2}

SOLUTIONS:

➲. AD is the median of triangle ABC, so point D is the med point of side BC .

➲ Vertices of B(6,5) and C(1,4)

Now finding the coordinate of D

&#10145 \: x \: coordinate \: of \: D =  \frac{6 + 1}{2}  \\  \\ &#10145 \: x \: coordinate \: of \: D  =  \frac{7}{2}  \:  \:  \:  \:  \:  \:  \:

&#10145 \: y \: coordinate \: of \: D  =  \frac{5 + 4}{2}  \\  \\ &#10145 \: y \: coordinate \: of \: D =  \frac{9}{2}  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions