Math, asked by prettykitty664, 4 days ago

If A(4, 3), B(-1, y) and C(3, 4) are the vertices of a right triangle ABC, right-angled at A, then find the value of y.


don't samp ❎❎​

Answers

Answered by VishnuPriya2801
148

Answer:-

Given:-

A(4 ,3) , B (- 1 , y) and C (3, 4) are the vertices of a right angled triangle.

And, A is the right angle. So, the opposite side (BC) would be the Hypotenuse.

We know that,

In a right angled triangle,

(Base)² + (Perpendicular)² = (Hypotenuse)²

Let the Base be AC and Perpendicular be AB.

We know that,

Distance between two points (x₁ , y₁) & (x₂ , y₂) is:

 \red{ \sf \:  \sqrt{(x_2 - x_1) ^{2} + ( {y_2 - y_1)}^{2}  } }

So,

For Base (AC);

Let

  • x₁ = 4
  • y₁ = 3
  • x₂ = 3
  • y₂ = 4

Hence,

 \sf \: AC \:  =  \sqrt{ {(3 - 4)}^{2}  + ( {4 - 3)}^{2} }  \\  \\  \\  \implies \sf \: AC \:  =  \sqrt{( - 1) ^{2}  +  {1}^{2} }  \\  \\  \\ \implies \sf \: AC \:  =  \sqrt{1 + 1}  \\  \\  \\ \implies \boxed{ \sf \: AC \:  =  \sqrt{2} }

Similarly,

For Perpendicular (AB);

Let,

  • x₁ = 4
  • y₁ = 3
  • x₂ = - 1
  • y₂ = y.

\implies \sf \: AB \:  =   \sqrt{( - 1 - 4 )^{2} + ( {y - 3)}^{2}  }  \\  \\  \\ \implies \sf \: AB \:  =  \sqrt{ {( - 5)}^{2} +  {(y - 3)}^{2}  }  \\  \\  \\ \implies \boxed{ \sf \: AB\:  =  \sqrt{25 + ( {y - 3)}^{2} } }

For Hypotenuse(BC),

Let,

  • x₁ = - 1
  • y₁ = y
  • x₂ = 3
  • y₂ = 4.

  \implies \sf \: BC \:  =  \sqrt{(3 - ( - 1)) ^{2} + (4 - y) ^{2}  }  \\  \\  \\  \implies \sf \: BC \:  = \sqrt{(3 + 1 )^{2} +  {(4 - y)}^{2}  }  \\  \\  \\  \implies \sf \: BC \:  = \sqrt{ {4}^{2} + (4 - y) ^{2}  }  \\  \\  \\  \implies  \boxed{\sf \: BC \:  = \sqrt{16 + ( {4 - y)}^{2} } }

Therefore,

  \implies \sf \: (AC) ^{2}   + (AB) ^{2} =   (BC)^{2}  \:  \\  \\  \\ \implies \sf \: {( \sqrt{2}) }^{2}  +  \big( \sqrt{  {25 +  {(y - 3)}^{2}} } \big)^{2}  =  { \big( \sqrt{16 +  {(4 - y)}^{2} }} \big)^{2}  \\  \\  \\ \implies \sf \:2 + 25 + (y - 3) ^{2} = 16 +  {(4 - y)}^{2}

Using (a - b)² = + - 2ab we get,

 \implies \sf \: 27 +  {y}^{2}  + 9 - 6y = 16 + 16 +  {y}^{2}  - 8y \\  \\  \\ \implies \sf \:36 - 6y = 32 - 8y \\  \\  \\ \implies \sf \: - 6y + 8y = 32 - 36 \\  \\  \\ \implies \sf \:2y =  - 4 \\  \\  \\ \implies \sf \: y =  \frac{ - 4}{2}   \\  \\  \\ \implies \boxed{ \sf \red{y =   - 2 }}

Answered by Anonymous
207

Answer:

Question :-

  • If A (4,3), B (-1,y) and C (3,4) are the vertices of a right triangle ABC , right angled at A .Then find the value of y .

Answer :-

  • The value of y=-2.

Given :-

  • If A (4,3), B (-1,y) and C (3,4) are the vertices of a right triangle ABC , right angled at A.

To find :-

  • The value of y .

Solution :-

  • Lets first start conversation of your question

In the question given that If A (4,3),B (-1,y),C (3,4) are the vertices of a right triangle ABC , right angled at A. We should need to find the value of y .

So ,

  • We know that,

 {AC}^{2}  +  {AB}^{2}  =  {BC}^{2}

  • Which is ,

 {base}^{2}  +  {perpend.}^{2} =  {hyp}^{2}

  • Here we should use distance between two points formula.
  • That is ,

 =  \sqrt{(x2 - x1) {}^{2}  + (y2 - y1) {}^{2} }

1》

Let apply the value to perpendicular AB .

  • Where x1=4,y=3,x2=-1,y2=y.

  • Now applying, we get that,

  • AB =  \sqrt{( - 1 - 4) {}^{2}  + (y - 3) {}^{2} }
  • AB =  \sqrt{ { (- 5)}^{2} + (y - 3) {}^{2}  }
  • AB =  \sqrt{25 + (y - 3) {}^{2} }

2》

  • Now for base AC.

  • Where,

  • x1=4,y1=3,x2=3,y2=4

  • Now applying all the values for formula we get that,

AC =  \sqrt{(3 - 4) {}^{2} + (4 - 3) {}^{2}  }

  • AC =  \sqrt{( { - 1)}^{2} +  {1}^{2}  }
  • AC =  \sqrt{2}

Now ,

3》

  • Hypothenuse BC
  • Where,
  • x1=-1,y1=y,x2=3,y2=4

  • Now applying it for formula we get that,

BC =  \sqrt{(3 - ( - 1) {}^{2} + (4 - y) {}^{2}  }

  • BC =  \sqrt{ {4}^{2} + (4 - y) {}^{2}  }  =  \sqrt{16 + (4 - y) {}^{2} }

Now ,

  • All the values in the formula we get that,

  • AC^2+AB^2=BC^2

 = ( \sqrt{2} ) {}^{2}  +  \sqrt{25 + (y - 3) {}^{2} }  {)}^{2}  =  \sqrt{16 + (4 - y)^2}  {}^{2}

  •  = 2 + 25 + (y - 3) {}^{2}  = 16 + (4 - y) {}^{2}

  • According to (a-b)^2 formula we get that,

  •  = 27 +  {y}^{2}  + 9 - 6y = 16 + 16 +  {y}^{2}  - 8y

  •  = 36 - 6y = 32 - 8y

  •   - 6y + 8y = 32 - 36 = 2y =  - 4

  • y =  \frac{ - 4}{2}  =  - 2

Therefore,

  • The value of y is -2.

Conclusion :-

  • See the given attachment for ABC right angled triangle.

Hope it helps u mate .

Thank you .

Attachments:
Similar questions