Math, asked by aksinghbsnl2004, 6 months ago

if a =4/9 and b= 3/5, evaluate {(1/a)}+{(1/b)}x{(1/a+b)}​

Answers

Answered by varadbhoj
0

Step-by-step explanation:

value \: of \: a =  \frac{4}{9}  \\ value \: of \: b =  \frac{3}{5}  \\ therefore \:  \frac{1}{a}  +  \frac{1}{b}  \times  \frac{1}{a +b }  \\  =  \frac{1}{ \frac{4}{9} }  +   \frac{1}{ \frac{3}{5} }  \times  \frac{1}{ \frac{4}{9} \times  \frac{3}{5}  }   \\

Now, we have to level both the numbers.

 \frac{4}{9}  =  \frac{4 \times 5}{9 \times 5}  = \frac{20}{45}  \\  and \\  \frac{3}{5}  =  \frac{3 \times 5}{5 \times 9}  =  \frac{15}{45}

Now, Let's find the answer

 \frac{1}{ \frac{20}{45} }  +  \frac{1}{ \frac{15}{45} }  +  \frac{1}{ \frac{20}{45}  \times  \frac{15}{45} }  \\  =  \frac{1}{ \frac{35}{40} }  +  \frac{1}{ \frac{300}{2025} }

Now, let's level those fractions

 \frac{35}{40}  =   \frac{7}{8}  \\ and \\  \frac{300}{2025}  =  \frac{60}{405}  \\  =  \frac{60}{405}   =  \frac{15}{81}

Now,

 \frac{7}{8}  +  \frac{15}{81}  \\  = \frac{567}{648} +  \frac{120}{648}    \\  =  \frac{567 + 120}{648}  \\  =  \frac{687}{648}  \\   = \frac{229}{216}  \\  = 1 \frac{13}{216}

Hope it helped.

Answered by JaiminDave0806
1

Answer:

Therefore=45/12 Or 3.75

Step-by-step explanation:

{(1/a)}+{(1/b)}x{(1/a+b)}

(1/4/9)+(1/3/5)×(1/4/9+3/5)

(9/4)+(5/3)×(1/20+27/45)

(9/4)+(5/3)×(45/47)

(27+20/12)×(45/4)

(47/45) ×(45/47)

45/12 OR 3.75

Similar questions