Math, asked by Sundararaj3264, 18 days ago

if A=45 degree B=30 degree then verify sin(A-B)= sin A* cos B- cos A*sin B

Answers

Answered by sujal1247
0

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S} \blue{W} \purple{E} \orange{R}}}}:

A =  45   \: and  \: B = 30 \\ \: Also,  \: A – B = 45 – 30 = 15 \\ \therefore \: sin (A  - B) = sin 15   \\ =  \frac{ \sqrt{6 }-  \sqrt{2} }{4} = 0.25881904. \: . \: . \: .(1)  \\  \therefore \: sin A cos B  -  cos A sin B  \\ = (sin 45) (cos 30)  -  (cos 45) (sin 30) \\  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  -  \frac{1}{ \sqrt{2} } \times   \frac{ 1 }{2}    \\  =   \frac{ \sqrt{3} }{ 2\sqrt{2} }  -  \frac{1}{2 \sqrt{2} }  \\  = \frac{ \sqrt{6 }-  \sqrt{2}}{4} \\  = 0.25881904. \: . \: . \: . (2) \\  \therefore \: from \: (1) \: and \: (2) \:  \\ sin (A  - B) =A cos B  -  cos A sin B \\ hence \: proved \:

\purple{\rule{45pt}{7pt}}\purple{\rule{45pt}{7pt}}\purple{\rule{45pt}{7pt}}\purple{\rule{45pt}{7pt}}

Similar questions