If A=4x²+y²-6xy B=3y²+12x²+8xy C=6x²+8y²+6xy
find A+B+C and 2A-B
Answers
There you go!! Hope it helps!
Step-by-step explanation:
Given:-
A=4x^2+y^2-6xy
B=3y^2+12x^2+8xy
C=6x^2+8y^2+6xy
To find:-
Find A+B+C and 2A-B ?
Solution:-
Given that :-
A=4x^2+y^2-6xy
B=3y^2+12x^2+8xy
It can be written as
B= 12x^2+3y^2+8xy
C=6x^2+8y^2+6xy
1) A+B+C:-
Horizontal method:-
(4x^2+y^2-6xy)+(12x^2+3y^2+8xy)+(6x^2+8y^2+6xy)
=> (4x^2+12x^2+6x^2)+(y^2+3y^2+8y^2)+(-6xy+8xy+6xy)
=> (4+12+6)x^2+(1+3+8)y^2+(-6+8+6)xy
=> 22x^2+12y^2+8xy
A+B+C = 22x^2+12y^2+8xy
Vertical method:-
4x^2 + y^2 - 6xy
12x^2 + 3y^2 + 8xy
6x^2 + 8y^2 + 6xy
(+)
__________________
22x^2 + 12y^2 + 8xy
__________________
2) 2A-B :-
2A = 2×A
=> 2×(4x^2+y^2-6xy)
=> 8x^2+2y^2-12xy
Now,
Horizontal method:-
2A-B = (8x^2+2y^2-12xy)-(12x^2+3y^2+8xy)
=> 8x^2+2y^2-12xy-12x^2-3y^2-8xy
=> (8x^2-12x^2)+(2y^2-3y^2)+(-12xy-8xy)
=> (8-12)x^2+(2-3)y^2+(-12-8)xy
=> (-4)x^2+(-1)y^2+(-20)xy
=> -4x^2-y^2-20xy
Vertical method:-:-
8x^2+2y^2-12xy
12x^2+3y^2+8xy
(-)
______________
-4x^2-y^2-20xy
______________
Answer:-
1) The value of A+B+C for the given problem is 22x^2+12y^2+ 8xy
2) The value of 2A-B is -4x^2-y^2-20xy
Used Methods:-
- Horizontal method
- Vertical method
Used Concept:-
- When subtract an expression from another expression then change the symbols of the second expression and add it.i.e. write the additive inverses of the terms in the second expression and then adding them .