Math, asked by anandsilwal3, 5 hours ago

if a = (√5+1) /(√5-1) and ab = 1, then find the value of (a/b + b/a) ​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a = \dfrac{ \sqrt{5}  + 1}{ \sqrt{5}  - 1}

So, On rationalizing the denominator, we get

\rm :\longmapsto\:a = \dfrac{ \sqrt{5}  + 1}{ \sqrt{5}  - 1} \times \dfrac{ \sqrt{5}  + 1}{ \sqrt{5}  + 1}

We know,

\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this, we get

\rm :\longmapsto\:a = \dfrac{ {( \sqrt{5}  + 1)}^{2} }{ {( \sqrt{5} )}^{2}  -  {1}^{2} }

\rm :\longmapsto\:a = \dfrac{5 + 1 + 2 \sqrt{5} }{5 - 1}

\rm :\longmapsto\:a = \dfrac{6 + 2 \sqrt{5} }{5 - 1}

\rm :\longmapsto\:a = \dfrac{2(3 +  \sqrt{5} )}{4}

\rm :\longmapsto\:a = \dfrac{3 +  \sqrt{5}}{2}

Now, Further given that

\rm :\longmapsto\:ab = 1

\bf\implies \:b = \dfrac{1}{a}

\bf\implies \:b = \dfrac{2}{3 +  \sqrt{5} }

So, on rationalizing the denominator, we get

\rm :\longmapsto\:b = \dfrac{2}{3 +  \sqrt{5} } \times \dfrac{3 -  \sqrt{5} }{3 -  \sqrt{5} }

\rm :\longmapsto\:b = \dfrac{2(3 -  \sqrt{5}) }{ {3}^{2} -  {( \sqrt{5} )}^{2}  }

\rm :\longmapsto\:b = \dfrac{2(3 -  \sqrt{5}) }{ 9 - 5}

\rm :\longmapsto\:b = \dfrac{2(3 -  \sqrt{5}) }{4}

\rm :\longmapsto\:b = \dfrac{3 -  \sqrt{5} }{2}

Now, we have,

\rm :\longmapsto\:b = \dfrac{3 -  \sqrt{5} }{2}

and

\rm :\longmapsto\:a = \dfrac{3  +  \sqrt{5} }{2}

Now, Consider

\rm :\longmapsto\:\dfrac{a}{b}  + \dfrac{b}{a}

 \rm \:  =  \: \dfrac{ {a}^{2}  +  {b}^{2} }{ab}

 \rm \:  =  \: \dfrac{ {a}^{2}  +  {b}^{2} }{1}

 \rm \:  =  \:  {a}^{2} +  {b}^{2}

 \rm \:  =  \:  {\bigg[\dfrac{3 +  \sqrt{5} }{2} \bigg]}^{2} +  {\bigg[\dfrac{3 -  \sqrt{5} }{2} \bigg]}^{2}

 \rm \:  =  \: \dfrac{1}{4}\bigg[ {(3 +  \sqrt{5}) }^{2}  +  {(3 -  \sqrt{5}) }^{2} \bigg]

 \rm \:  =  \: \dfrac{1}{4}\bigg[ 9 + 5 + 6 \sqrt{5}  + 9 + 5 - 6 \sqrt{5}  \bigg]

 \rm \:  =  \: \dfrac{1}{4}\bigg[28\bigg]

 \rm \:  =  \: 7

Hence,

\rm :\longmapsto\:\boxed{\tt{  \: \dfrac{a}{b}  + \dfrac{b}{a}  = 7 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{  {(a + b)}^{2} =  {a}^{2} +  {b}^{2} + 2ab}}

\boxed{\tt{  {(a -  b)}^{2} =  {a}^{2} +  {b}^{2}  -  2ab}}

\boxed{\tt{ (a + b)(a - b) =  {a}^{2} -  {b}^{2}}}


BrainlyPopularman: Nice
Answered by hetal43b
1

Answer:

Hi! can u pls solve this for me:)

as ur a genius like Einstein

Pls solve this^^

I know I m asking this is ur question.....

but... pls

I M NEEDING THIS URGENT SO ...

Attachments:
Similar questions