Math, asked by tannu006, 2 months ago

if a = √5 + 1/√5 - 1 and b = √5-1/√5 + 1, the value of a² + ab + b²/a² - ab + b² is​

Answers

Answered by user0888
6

Hint.

Rationalizing a=\dfrac{\sqrt{5} +1}{\sqrt{5} -1} and b=\dfrac{\sqrt{5} -1}{\sqrt{5} +1} we obtain a=\dfrac{3+\sqrt{5} }{2} and b=\dfrac{3-\sqrt{5} }{2}.

We observe that a+b=3 and ab=1.

Solution.

We have,

  • a+b=3
  • ab=1

Given, \dfrac{a^2+ab+b^2}{a^2-ab+b^2}

=\dfrac{(a+b)^2-ab}{(a+b)^2-3ab}

=\dfrac{3^2-1}{3^2-3} =\dfrac{8}{6} =\boxed{\frac{4}{3} }

Answered by TrustedAnswerer19
3

Firstly,

Rationalizing a=\dfrac{\sqrt{5} +1}{\sqrt{5} -1} and b=\dfrac{\sqrt{5} -1}{\sqrt{5} +1} we obtain a=\dfrac{3+\sqrt{5} }{2} and b=\dfrac{3-\sqrt{5} }{2}.

We observe that a+b=3 and ab=1.

Now,

We have,

a+b=3

ab=1

Given,

\displaystyle\dfrac{a^2+ab+b^2}{a^2-ab+b^2}

=\dfrac{(a+b)^2-ab}{(a+b)^2-3ab}

=\dfrac{3^2-1}{3^2-3} =\dfrac{8}{6} ={\frac{4}{3} }

Similar questions