If a = √5 +1/√5 -1 and b= √5-1/√5+1, then find a^2+ab+b^2/a^2-ab+b^2.
Answers
Answered by
4
Step-by-step explanation:
Solution
a² + ab + b²
a²ab +6²
(a² +6²) + ab
(a² + 6²) -ab
(a + b)² - 2ab + ab
(a + b)²-2ab-ab
[a² + b² = (a + b)² - 2ab]
(a + b)² - ab
(a + b)²-3ab
(1)
√5+1
√5-1
a =
b =
√5 1
√5+1
ab =
√5 +1
√5 -1
√5+1
X
= 1√5 +1 √5-1
√5-1
√5+1
ab =
√5 +1 √5-1
+
a+b=
√5-1 √5 +1
(√5 + 1)² + (√5 - 1)²
(√5 + 1)(√5 - 1)
2[(√5)² + (1)²]
(√5)²-(1)²
(a + b)² + (a - b)² = 2(a² +6²)
(a + b) + (a - b) = a² - b²
2(5+1)
5-1
2 × 6
4
= 3
... From (1)→
a² + ab +6²
a²ab + b²
(3)²-.. From (1)
a² + ab + b²
a²ab + b²
(3)² - 1
(3)² - 3 x 1
9-1
9-3
8
4
3
Hence, value of
a² + ab + b²
a²ab + b²
4
3
it may helps you
Similar questions
Math,
5 hours ago
English,
5 hours ago
Social Sciences,
5 hours ago
English,
9 hours ago
Science,
8 months ago