Math, asked by himansu05, 1 year ago

If a=(√5+2)/(√5-2) and b=(√5-2)/(√5+2) then find the value of a^2-b^2

Answers

Answered by kaishviyadav
4
hey mate ur answer is here In this picture.
Attachments:
Answered by Muskan1101
12
Here's your answer !!

____________________________

It's given that,

 = > a = \frac{ \sqrt{5} + 2}{ \sqrt{5} - 2 }

We will now rationalise it ,

 = > \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2 } \times \frac{ \sqrt{5} + 2}{ \sqrt{5} + 2}

 = > \frac{ {( \sqrt{5} + 2) }^{2} }{( { \sqrt{5} )}^{2} - {(2)}^{2} }

 = > \frac{5 + 4 + 4 \sqrt{5} }{1}

 a= 9 + 4 \sqrt{5}

Now,

b = \frac{ \sqrt{5} - 2}{ \sqrt{5} + 2 }

By rationalizing it,we get :-

 = > \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2}{ \sqrt{5} - 2 }

 = > \frac{ {( \sqrt{5} - 2)}^{2} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} }

 = > \frac{5 + 4 - 4 \sqrt{5} }{1}

 b= 9 - 4 \sqrt{5}

We have to find value of ,

 = > {a}^{2} - {b}^{2}

 = > {(9 + 4 \sqrt{5}) }^{2} - {(9 - 4 \sqrt{5} )}^{2}

 = > (81 + 80 + 8 \sqrt{5} ) - (81 + 80 - 8 \sqrt{5} )

 = > 81 + 80 + 8 \sqrt{5} - 81 - 80 + 8 \sqrt{5}

81 \: and \: - 81 \: 80 \: and \: - 80 \:get \: cancelled

 = > 16 \sqrt{5}

Hence,

 = > {a}^{2} - {b}^{2} = 16 \sqrt{5}

______________________________

Hope it helps you!! :)
Answered by Muskan1101
11
Here's your answer !!

____________________________

It's given that,

 =  > a =  \frac{ \sqrt{5}  + 2}{ \sqrt{5} - 2 }
We will now rationalise it ,
 =  >  \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2 }   \times  \frac{ \sqrt{5} + 2}{ \sqrt{5}  + 2}
 =  >  \frac{ {( \sqrt{5} + 2) }^{2} }{( { \sqrt{5} )}^{2}  -  {(2)}^{2} }
 =  >  \frac{5 + 4 + 4 \sqrt{5} }{1}
 a=   9 + 4 \sqrt{5}

Now,
b =  \frac{ \sqrt{5}  - 2}{ \sqrt{5} + 2 }
By rationalizing it,we get :-
 =  >  \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 }  \times  \frac{ \sqrt{5}  - 2}{ \sqrt{5} - 2 }
 =  >   \frac{ {( \sqrt{5}  - 2)}^{2} }{ {( \sqrt{5} )}^{2}  -  {(2)}^{2} }
 =  >  \frac{5 + 4 - 4 \sqrt{5} }{1}
 b=    9  - 4 \sqrt{5}
We have to find value of ,
 =  >  {a}^{2}  -  {b}^{2}
 =  >  {(9 + 4 \sqrt{5}) }^{2} -  {(9 - 4 \sqrt{5} )}^{2}
 =  > (81  + 80 + 8 \sqrt{5} ) - (81 + 80 - 8 \sqrt{5} )
 =  > 81  + 80 + 8 \sqrt{5}  - 81  - 80 + 8 \sqrt{5}
81 \: and \: - 81 \: 80 \: and \:  - 80 \:get \: cancelled
 =  > 16 \sqrt{5}
Hence,
 =  >  {a}^{2}  -  {b}^{2}  = 16 \sqrt{5}
______________________________

Hope it helps you!! :)
Similar questions