Math, asked by fanpagediljitdosanjh, 1 month ago

if a = 5+2√6 find the value of a²+1÷a²​

Answers

Answered by Anonymous
21

\huge\text{ANSWER}

 \huge\text \green{Given}

 \bf{a = 5 + 2 \sqrt{6} }

\huge\text{Explanation}

 \sf{ \frac{1}{a}  =  \frac{1}{5 + 2 \sqrt{6}}  \times  \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6}}  =  \frac{5 - 2 \sqrt{6} }{  {(5)}^{2} -  {(2 \sqrt{6)} }^{2} } } \\

 \sf{ \frac{5 - 2 \sqrt{6} }{25 - 24}  = \frac{5 - 2 \sqrt{6} }{1} = 5 - 2 \sqrt{6}} \\

 \sf{a +  \frac{1}{a}  = (5 + 2 \sqrt{6} ) + (5 - 2 \sqrt{6} ) = 10} \\

\huge\text{Now}

 \sf{( {a}^{2}  +  \frac{1}{ {a}^{2} })} \\

 \sf{ = (a +  \frac{1}{a} {)}^{2}  - 2a  \: \frac{1}{a} } \\

 \sf{ = (5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6}  {)}^{2}  - 2}

 = \sf {{(10)}^{2}  - 2}

 \bf{ = 100 - 2 = 98}

 \huge \boxed{98}

\huge\text{THANKS}

Answered by Anonymous
77

GIVEN :

† a = 5+2√6

TO FIND :

find the value of a²+1÷a²

Identities used :

  \sf:  \implies \:  {{(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab} \\ \\    \sf:\implies \:  {{(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab} \\ \\   \sf:\implies \:{  \: (a + b)(a - b) = {a}^{2} - {b}^{2}}

Given,

a = 5+ 2√6

So,

 \bf{\frac{1}{a} = \frac{1}{5 + 2 \sqrt{6} } }

On rationalizing the denominator we get,

 \sf :  \implies\frac{1}{a} = \frac{1}{5 + 2 \sqrt{6} } \times \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} } \\ \\\sf :  \implies \frac{1}{a} = \frac{5 - 2 \sqrt{6} }{ {(5)}^{2} - {(2 \sqrt{6} )}^{2} } \\ \\ \sf :  \implies\frac{1}{a} = \frac{5 - 2 \sqrt{6} }{25 - 24} \\ \\ \sf :  \implies \frac{1}{a} = 5 - 2 \sqrt{6}

Now,

 : \implies \sf \: a + \frac{1}{a} = (5 + 2 \sqrt{6} ) + (5 - 2 \sqrt{6} ) \\ \\  : \implies \sf \:a + \frac{1}{a} = 5 + 2 \sqrt{6} + 5 - 2 \sqrt{6} \\ \\  : \implies \sf \: a + \frac{1}{a} = 10

Squaring both the sides we get,

 :\implies \sf { (a + \frac{1}{a} )}^{2} = {(10)}^{2} \\ \\  :\implies \sf{a}^{2} + {( \frac{1}{a} )}^{2} + 2 \times a \times \frac{1}{a} = 100 \\ \\ :\implies \sf {a}^{2} + \frac{1}{ {a}^{2} } = 100 - 2 \\ \\  :\implies \sf \: { a }^{2} + \frac{1}{ {a}^{2} } = 98

Similar questions