Math, asked by 2008vineetmishra, 9 months ago

If A= 5+2√6 ,so find that value of √A+ 1/√A .

Answers

Answered by arman7532
0

Step-by-step explanation:

5 bracket 22953 2222222 222 YouTube 222 YouTube to Bou Ku Ku Ku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Koyal Bole Ku Ku Ku Tum Bole Ku Ku Ku papa

Answered by AlluringNightingale
1

Answer:

√A + 1/√A = 2√3

Solution:

Given: A = 5 + 2√6

To find : √A + 1/√A

We have ,

=> A = 5 + 2√6

=> A = 3 + 2 + 2√6

=> A = 3 + 2√6 + 2

=> A = (√3)² + 2•√3•√2 + (√2)²

=> A = (√3 + √2)²

=> √A = √3 + √2 --------(1)

Now,

=> √A = √3 + √2

=> 1/√A = 1/(√3 + √2)

Rationalising the denominator of the term in RHS , we have ;

=> 1/√A = (√3 - √2) / (√3 + √2)(√3 - √2)

=> 1/√A = (√3 - √2) / [ (√3)² - (√2)² ]

=> 1/√A = (√3 - √2) / (3 - 2)

=> 1/√A = (√3 - √2) / 1

=> 1/√A = √3 - √2 -------(2)

Now,

Adding eq-(1) and (2) , we have ;

=> √A + 1/√A = √3 + √2 + √3 - √2

=> √A + 1/√A = 2√3

Hence,

The required value of √A + 1/√A is 2√3.

Similar questions