If A= 5+2√6 ,so find that value of √A+ 1/√A .
Answers
Step-by-step explanation:
5 bracket 22953 2222222 222 YouTube 222 YouTube to Bou Ku Ku Ku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Kuku Koyal Bole Ku Ku Ku Tum Bole Ku Ku Ku papa
Answer:
√A + 1/√A = 2√3
Solution:
Given: A = 5 + 2√6
To find : √A + 1/√A
We have ,
=> A = 5 + 2√6
=> A = 3 + 2 + 2√6
=> A = 3 + 2√6 + 2
=> A = (√3)² + 2•√3•√2 + (√2)²
=> A = (√3 + √2)²
=> √A = √3 + √2 --------(1)
Now,
=> √A = √3 + √2
=> 1/√A = 1/(√3 + √2)
Rationalising the denominator of the term in RHS , we have ;
=> 1/√A = (√3 - √2) / (√3 + √2)(√3 - √2)
=> 1/√A = (√3 - √2) / [ (√3)² - (√2)² ]
=> 1/√A = (√3 - √2) / (3 - 2)
=> 1/√A = (√3 - √2) / 1
=> 1/√A = √3 - √2 -------(2)
Now,
Adding eq-(1) and (2) , we have ;
=> √A + 1/√A = √3 + √2 + √3 - √2
=> √A + 1/√A = 2√3
Hence,
The required value of √A + 1/√A is 2√3.