Math, asked by kankeshrajpbcn90, 1 year ago

if a=5+2√6 then find the value of a^2+1/a^2

Answers

Answered by Shubhendu8898
29
Given,
a= 5+2√6

1/a= 1/(5+2√6)
multiplying with comgugates,
1/a = (5-2√6)/{(5+2√6)(5-2√6)

1/a = (5-2√6)/{5² -(2√6)²}

1/a = (5-2√6)/{25 - 24}

1/a = 5-2√6

Refer to attachment.
identities used
a²-b² = (a+b)(a-b)

....
Attachments:
Answered by gayatrikumari99sl
7

Answer:

98 is the required value of a^2+ (\frac{1}{a}) ^2 .

Step-by-step explanation:

Explanation:

Given, a =5 + 2\sqrt{6}  and a^2+ (\frac{1}{a}) ^2 .

To find the value of a^2+ (\frac{1}{a}) ^2 , first, we rationalize a^{2} .

Step 1:

Therefore, we have , a^{2}  = (5 +2\sqrt{6} )^{2}   and (\frac{1}{a})^{2}  =  (\frac{1}{ (5 +2\sqrt{6} )})^{2}

First, we rationalize  the value of a^{2}  =  (5+2\sqrt{6})^2

a^{2}  = (  5+2\sqrt{6} .\frac{ 5-2\sqrt{6}}{  5-2\sqrt{6} })^{2}  

[Multiplying numerator and denomination with 5-2\sqrt{6} ]

a^{2} = (\frac{(5 + 2\sqrt{6} )(5-2\sqrt{6}) }{5- 2\sqrt6x} })^2 = (\frac{5^2 - (2\sqrt{6} )^2}{5 -2\sqrt{6} } )^{2}

a^2 = (\frac{25 - 24  )}{5 -2\sqrt{6} } )^{2} = (\frac{1}{5 - 2\sqrt{6} } )^2

Step 2:

From the question we have,  a^2+ (\frac{1}{a}) ^2  

Now, put the value of a^2 and \  (\frac{1}{a} )^2  we get,

⇒   a^2+ (\frac{1}{a}) ^2 =    (\frac{1}{5 - 2\sqrt{6} } )^2 + (\frac{1}{5 + 2\sqrt{6} } )^2 = \frac{({5 + 2\sqrt{6} } )^2+({5 - 2\sqrt{6} } )^2 }{({5 - 2\sqrt{6} } )^2.({5 + 2\sqrt{6} } )^2}

⇒  a^2+ (\frac{1}{a}) ^2 =  \frac{(25 +24 +20\sqrt{6} + (25 + 24 - 20\sqrt{6} ) )}{(5^2-(2\sqrt{6} )^2)^2}         [∴a^2 - b^2 = (a-b)(a+b)]

= a^2+ (\frac{1}{a}) ^2 = \frac{98}{(25-24)^2}     = 1

Final answer:

Hence, the  value of  a^2+ (\frac{1}{a}) ^2 is 98

#SPJ3

Similar questions