Math, asked by Rakshakkumar27, 1 year ago

if a=5-2√6,then find the value of a^3+1/a^3​

Answers

Answered by LovelyG
4

Answer:

\large{\underline{\boxed{\sf 970}}}

Step-by-step explanation:

Given that ;

a = 5 - 2√6

Now, find the value of 1/a.

 \implies \sf  \frac{1}{a}  =  \frac{1}{5 - 2 \sqrt{6} }  \\  \\  \implies \sf  \frac{1}{a}  = \frac{1}{5 - 2 \sqrt{6} }  \times  \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} }  \\  \\  \implies \sf  \frac{1}{a}  =  \frac{5 + 2 \sqrt{6} }{(5)^{2} - (2 \sqrt{6}) {}^{2} }  \\  \\  \implies \sf  \frac{1}{a}  =  \frac{5 + 2 \sqrt{6} }{25 - 24}  \\  \\  \implies \sf  \frac{1}{a}  = 5 + 2 \sqrt{6}

Find the value of a + (1/a).

 \implies \sf  a + \frac{1}{a}  = 5 - 2 \sqrt{6} +  5 - 2 \sqrt{6}  \\  \\  \implies \sf a +  \frac{1}{a}  = 10

On cubing both sides ;

 \implies \sf (a +  \frac{1}{a}) {}^{3} =  (10) {}^{3}  \\  \\  \implies \sf  a ^{3}  + \frac{1}{a^{3}}  + 3 \:.  \:  a\:  .\: \frac{1}{a}(a +  \frac{1}{a})   = 1000 \\  \\ \implies \sf  a ^{3}  + \frac{1}{a^{3}}+ 3(10) = 1000 \\  \\ \implies \sf  a ^{3}  + \frac{1}{a^{3}} + 30 = 1000 \\  \\\implies \sf  a ^{3}  + \frac{1}{a^{3}} = 1000 - 30 \\  \\  \red{\boxed{ \bf \therefore \:   a ^{3}  + \frac{1}{a^{3}} = 970}}

Similar questions