Math, asked by kalluuuuuu, 1 year ago

if a=5-2 root 6 then find a2+1/a2


kalluuuuuu: hello guys i got the answer
kalluuuuuu: answer is 98

Answers

Answered by DaIncredible
18
Hey friend,
Here is the answer you were looking for:
a = 5 - 2 \sqrt{6}  \\  \\  \frac{1}{a}  =  \frac{1}{5 - 2 \sqrt{6} }

On rationalizing the denominator we get,

 \frac{1}{a}   =  \frac{1}{5 - 2 \sqrt{6} }  \times  \frac{5 + 2 \sqrt{6} }{5 +  \sqrt{6} }  \\

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

Putting x = 5
and y = 2√6

 =  \frac{5 + 2 \sqrt{6} }{ {(5)}^{2}  -  {(2 \sqrt{6} })^{2} }  \\  \\  =  \frac{5 + 2 \sqrt{6} }{ {(5)}^{2}  -  {(2 \sqrt{6} )}^{2} }  \\  \\  =  \frac{5 + 2 \sqrt{6} }{25 - 24}  \\  \\  = 5 + 2 \sqrt{6}  \\  \\ a +  \frac{1}{a}  = (5 - 2 \sqrt{6} ) + (5  + 2 \sqrt{6} ) \\  \\ a +  \frac{1}{a}  = 5 - 2 \sqrt{6}  + 5 + 2 \sqrt{6}  \\  \\ a +  \frac{1}{a}  = 10 \\

Squaring both the sides we get :

 {(a +  \frac{1}{a} )}^{2}  =  {(10)}^{2}  \\  \\  {(a)}^{2}  +  {( \frac{1}{a} )}^{2}  + 2 \times a \times  \frac{1}{a}  = 100 \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 = 100 \\  \\   {a}^{2}  +   \frac{1}{ {a}^{2} }  = 100 - 2 \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 98


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

Anonymous: nice miss topper :-)
kalluuuuuu: YEAH I GOT THE ANSWER
Answered by rohitkumargupta
14
HELLO DEAR,


GIVEN THAT:-


a = (5 - 2√6)
[ on Squaring both side ]

we get,

a² = (25 + 24 - 20√6)

a² = (49 - 20√6)---------------( 1 )


now,

1/a² = 1/(49 - 2√6)


1/a² = 1/(49 - 20√6) * [ (49 + 20√6)/(49 +20√6) ]


1/a² = (49 + 20√6)/( 2401 - 2400)


1/a² = (49 + 20√6)-----------(2)


adding----(1) & -----(2)


we get,


(a² + 1/a²) = (49 - 20√6) + (49 + 20√6)

(a² + 1/a²) = 49 + 49 + 20√6 - 20√6

(a² + 1/a²) = 98



I HOPE ITS HELP YOU DEAR,
THANKS

YASH3100: Hey bro!!!
How are you bhai.......plsss check your inbox there must be a message from the id @PIYUSH2202 that's me bro
Similar questions