Math, asked by ksridevi110, 2 months ago

if a=5+√3/2 then find the value of a² +1/a²​

Answers

Answered by TrishnaMandal
0

Step-by-step explanation:

a=

2

3+

5

a

1

=

3+

5

2

On rationaliging the denominator , we get ,

a

1

=

(3+

5

)(3−

5

)

2(3−

5

)

=

9−5

6−2

5

=

4

6−2

5

=

2

3−

5

Also,

(a+

a

1

)

2

=a

2

+

a

2

1

+2

Substituting the values of a

=

a

1

,

We get ,

`(

2

3+

5

+

2

3−

5

)

2

=(a

2

+

a

2

1

+2)

∴a

2

+

a

2

1

+2=(

2

3+

5

+3−

5

)

2

=(3)

2

=9

∴a

2

+

a

2

1

=9−2=7.

Answered by Salmonpanna2022
4

Step-by-step explanation:

 \bf \underline{Solution-} \\

Given expression

 \bf \: a = \frac{5 +  \sqrt{3} }{2}  \\

 \bf \therefore \:  \frac{1}{a}  =  \frac{1}{ \frac{5 +  \sqrt{3} }{2} } =  \frac{2}{5 +   \sqrt{3}  }   \\

 \bf \: So, \:  \frac{1}{a}  =  \frac{2}{5 +  \sqrt{3} }  \\

The denomination = 5 + √3.

We know that

Rationalising factor of x + y = x - y.

So, rationalising factor of 5 + 3 = 5 - 3.

On both the denominator them

 \bf \:  =  \frac{2}{5 +  \sqrt{3} }  \times  \frac{5 -  \sqrt{3} }{5 -  \sqrt{3} }  \\

 \bf =  \frac{2(5 -  \sqrt{3} )}{(5 +  \sqrt{3} )(5  -   \sqrt{3}) }  \\

  • [(x + y)(x - y) = -
  • Where, x = 5 and y = 3]

 \bf =  \frac{2(5 -  \sqrt{3}) }{( 5 {)}^{2}  - ( \sqrt{3} {)}^{2}   }  \\

 \bf =  \frac{2(5 -  \sqrt{3} )}{25 - 3}  \\

 \bf =  \frac{2(5 -  \sqrt{3} )}{22}  \\

 \bf =  \frac{5 -  \sqrt{3} }{2}  \\

Now, adding both values a and 1/a we get

 \bf \: a +  \frac{1}{a}  =  \frac{5 +  \sqrt{3} }{2}  +  \frac{5 -  \sqrt{3} }{2}  \\

 \bf \: a +  \frac{1}{a}  =  \frac{5 +   \cancel{\sqrt{3}} + 5 -  \cancel{ \sqrt{3}}  }{2}  \\

\bf \: a +  \frac{1}{a}  =  \frac{ 5 + 5}{2}  \\

\bf \: a +  \frac{1}{a}  =   \cancel{\frac{10}{2} } \\

\bf \: a +  \frac{1}{a}  = 5 \\

Now, squaring on both sides, we get

\bf \: \bigg( a +  \frac{1}{a}  \bigg) ^{2}  = (5 {)}^{2}  \\

  • (a+b)² = a² + 2ab + b².

\bf  \longrightarrow\:  {a}^{2}    + 2( \cancel{a}) \bigg( \frac{1}{ \cancel{a}} \bigg) +  \bigg( \frac{1}{ a}  \bigg) ^{2}  = 25 \\

\bf  \longrightarrow \:  {a}^{2}  + 2 +   \frac{1}{ {a}^{2} }  = 25 \\

  \bf\longrightarrow \:  {a}^{2}  +  \frac{1}{ {a}^{2} }   = 25 - 2 \\

  \bf\longrightarrow \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 23 \\

  \underline{\bf \: Hence \:  the \:  required \:  value  \: of \:  {a}^{2}  +  \frac{1}{ {a}^{2} } is \: 23.} \\

Similar questions