Math, asked by Anargha, 10 months ago

if A=580° then prove that sinA/2= 1/2(- root over of 1+sinA - root over of 1- sinA)​

Answers

Answered by slime98
0

Answer:

thanks you for answering

Attachments:

Anargha: What is this? If can't give the answer then try not to do foolish things
Answered by sonuvuce
2

If A=580^\circ, then prove that \sin \frac{A}{2}=\frac{1}{2}(-\sqrt{1+\sin A}-\sqrt{1-\sin A})

The proof is given below:

Given

\angle A=580^\circ

To Prove that

\sin \frac{A}{2}=\frac{1}{2}(-\sqrt{1+\sin A}-\sqrt{1-\sin A})

RHS

=\frac{1}{2}(-\sqrt{1+\sin A}-\sqrt{1-\sin A})

=-\frac{1}{2}(\sqrt{1+\sin A}+\sqrt{1-\sin A})

=-\frac{1}{2}(\sqrt{\sin^2\frac{A}{2}+\cos^2\frac{A}{2}+2\sin \frac{A}{2}\cos\frac{A}{2}}+\sqrt{\sin^2\frac{A}{2}+\cos^2\frac{A}{2}-2\sin \frac{A}{2}\cos\frac{A}{2}})

=-\frac{1}{2}(\sqrt{(\sin\frac{A}{2}+\cos\frac{A}{2})^2}+\sqrt{(\sin\frac{A}{2}+\cos\frac{A}{2})^2}

=-\frac{1}{2}(|\sin\frac{A}{2}+\cos\frac{A}{2}|+|\sin\frac{A}{2}-\cos\frac{A}{2}|)    (Note: We know that \sqrt{x^2}=|x| and |x| = x if x ≥ 0; |x| = -x if x < 0)

\angle A=580^\circ

\angle A/2=290^\circ

Therefore,

RHS

=-\frac{1}{2}(|\sin 290^\circ+\cos 290^\circ|+|\sin 290^\circ-\cos 290^\circ|)

=-\frac{1}{2}(|\sin (360^\circ-70^\circ)+\cos (360^\circ-70^\circ)|+|\sin (360^\circ-70^\circ)-\cos (360^\circ-70^\circ)|)

=-\frac{1}{2}(|-\sin 70^\circ+\cos 70^\circ|+|-\sin 70^\circ-\cos 70^\circ|)

=-\frac{1}{2}(-(-\sin 70^\circ+\cos 70^\circ)-(-\sin 70^\circ-\cos 70^\circ))

=\frac{1}{2}(-\sin 70^\circ+\cos 70^\circ)+(-\sin 70^\circ-\cos 70^\circ))

=-\frac{1}{2}(2\sin 70^\circ)

=-\sin 70^\circ

Now,

LHS

=\sin\frac{A}{2}

=\sin290^\circ

=\sin(360^\circ-70^\circ)

=-\sin 70^\circ

Therefore, LHS = RHS                                            (Proved)

Hope this answer is helpful.

Know More:

Q: Find the value of √1+sinA/1-sinA

Click Here: https://brainly.in/question/653900

Similar questions