Math, asked by heyprathik, 7 hours ago

if a = 5i - j -3k and b= i+3j-5k, then show that the vectors a+b and a-b are perpendicular​

Answers

Answered by Tomboyish44
73

Given:

\sf \overrightarrow{\sf \ A \ } = 5\hat{i} - \hat{j} - 3\hat{k}

\sf \overrightarrow{\sf \ B \ } = \hat{i} + 3\hat{j} - 5\hat{k}

To prove:

\sf \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } \perp\sf \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }

Solution:

For any two vectors to be perpendicular to each other, the angle formed between them should 90°.

The angle between any two vectors is given by the dot product of the two vectors divided by the product of the magnitude of both the vectors.

\sf \dashrightarrow cos\theta = \dfrac{\left(\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ }\right)\bullet \left(\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }\right)}{\left|\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ }\right| \left|\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }\right|} \\ \\

Calculating _{\overrightarrow{\ \sf A \ } + \overrightarrow{\ \sf B \ }} :

\sf \dashrightarrow \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } = (5\hat{i} - \hat{j} - 3\hat{k}) + (\hat{i} + 3\hat{j} - 5\hat{k})

\sf \dashrightarrow \overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } = 5\hat{i} + \hat{i} - \hat{j} + 3\hat{j} - 3\hat{k} - 5\hat{k}

\sf \dashrightarrow \underline{\underline{\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } = 6\hat{i} + 2\hat{j} - 8\hat{k}}} \ \dots \ Relation (1)

Calculating _{\overrightarrow{\ \sf A \ } - \overrightarrow{\ \sf B \ }} :

\sf \dashrightarrow \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } = (5\hat{i} - \hat{j} - 3\hat{k}) - (\hat{i} + 3\hat{j} - 5\hat{k})

\sf \dashrightarrow \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } = 5\hat{i} - \hat{j} - 3\hat{k} - \hat{i} - 3\hat{j} + 5\hat{k}

\sf \dashrightarrow \overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } = 5\hat{i} - \hat{i} - \hat{j} - 3\hat{j} - 3\hat{k} + 5\hat{k}

\sf \dashrightarrow \underline{\underline{\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } = 4\hat{i} - 4\hat{j} + 2\hat{k}}} \ \dots \ Relation (2)

Calculating _{| \overrightarrow{\ \sf A \ } + \overrightarrow{\ \sf B \ }|} :

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } | = \sqrt{x^2 + y^2 + z^2}

On substituting the value obtained in Relation (1) we get;

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } | = \sqrt{(6)^2 + (2)^2 + (-8)^2}

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } | = \sqrt{36 + 4 + 64}

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ } | = \sqrt{104} \ \dots \ Relation (3)

Calculating _{| \overrightarrow{\ \sf A \ } - \overrightarrow{\ \sf B \ }|}:

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } | = \sqrt{x^2 + y^2 + z^2}

On substituting the value obtained in Relation (2) we get;

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } | = \sqrt{(4)^2 + (-4)^2 + (2)^2}

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } | = \sqrt{16 + 16 + 4}

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } | = \sqrt{36}

\sf \dashrightarrow |\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ } | = 6 \ \dots \ Relation (4)

On substituting these relations in the formula we get;

\sf \dashrightarrow cos\theta = \dfrac{\left(\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ }\right)\bullet \left(\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }\right)}{\left|\overrightarrow{\sf \ A \ } + \sf \overrightarrow{\sf \ B \ }\right| \left|\overrightarrow{\sf \ A \ } - \sf \overrightarrow{\sf \ B \ }\right|} \\ \\

\sf \dashrightarrow cos\theta = \dfrac{\left(6\hat{i} + 2\hat{j} - 8\hat{k}\right)\bullet \left(4\hat{i} - 4\hat{j} + 2\hat{k}\right)}{\sqrt{104} \times 6} \\ \\

We know that;

\sf \hat{i} \times \hat{j} = \hat{j} \times \hat{k} = \sf \hat{k} \times \hat{i} = 0

\sf \hat{i}^{ \ 2} = \sf \hat{j}^{ \ 2} = \sf \hat{k}^{ \ 2} = 1

\sf \dashrightarrow cos\theta = \dfrac{\left(6\hat{i}\right)\left(4\hat{i}\right) + \left(2\hat{j}\right)\left(- 4\hat{j}\right) - \left(8\hat{k}\right)\left(2\hat{k}\right)}{\sqrt{104} \times 6} \\ \\

‎‎

\sf \dashrightarrow cos\theta = \dfrac{24 - 8 - 16}{\sqrt{104} \times 6} \\ \\

\sf \dashrightarrow cos\theta = \dfrac{16 - 16}{\sqrt{104} \times 6} \\ \\

\sf \dashrightarrow cos\theta = \dfrac{0}{\sqrt{104} \times 6} \\ \\

\sf \dashrightarrow cos\theta = 0

We know that cos90° = 0, therefore;

\sf \dashrightarrow \theta = 90^\circ

Hence proved.


Anonymous: Great! (≧▽≦)
Tomboyish44: Thank you! :)
Similar questions