Math, asked by VIRAT31675, 4 months ago

If A(6,1), B(8,2) and C(9,4) are the three vertices of a parallelogram ABCD. If E is the

midpoint of DC, find the area of ΔADE​

Answers

Answered by Anonymous
64

\mathfrak{\bf{\underline{\underline{Given \ :}}}}

\mathsf{{A(6,1)}}

\mathsf{{B(8,2)}}

\mathsf{{C(9,4)}}

Letѕ cσnѕíder the fσurth vєrtєх σf pαrαllєlσgrαm αѕ D\mathsf{ (х,y)}

We all knσw thαt, díαgσnαlѕ σf pαrαllelσgrαm ínterѕect eαch σther.

\mathfrak{\bf{\underline{\underline{To \ Find} \ :-}}} \mathsf{Area \: of \:Triangle \:  ADE = \:   ? }

\mathfrak{\bf{\underline{\underline{ Solution \ :}}}} \mathsf {To \: find \: the \: coordinates \: of \: D}

 \mathbf{Midpoint \: of \:BD} =  \mathbf{Midpoint \: of \: AC}

   \underline{\huge\mathfrak{Formula}}  : - \\  ㅤㅤㅤㅤㅤ\mathbf{Midpoint =  \frac{a + b}{2} }

 \implies \:   \bold{ \mathtt{(\frac{8 + x}{2} , \frac{2 + y}{2})  = (\frac{6 + 9}{2}, \frac{1 + 4}{2} } ) }

 \implies \mathtt{ (\frac{8 + x}{2} , \frac{2 + y}{2}  )=  (\frac{15}{2} , \frac{5}{2}) }</p><p>

 \implies \mathtt{ \frac{8 + x}{ \cancel2}  =  \frac{15}{ \cancel2}  \:  \:  \:  \:  \:  \:  \:  \:  \frac{2 + y}{ \cancel2}  =  \frac{5}{ \cancel2} }

  \implies{ \:  \:  \:   \boxed{ \mathtt{x = 7}} \:  \:   \:  \:  \:  \: \:  \:   \:  \:  \:  \: \:  \boxed{ \mathtt{y = 3}}}

Therefσre, the cσ-σrdínαteѕ σf verteх D is ( 7,3 )

 \mathsf{Mipoints \: of \: DC \: i.e. \: coordinates \: of \: E \: is \:  (\frac{9 + 7}{2}, \frac{3 + 4}{2}  )}

 \mathsf{coordinates \: of \: E = (8, \frac{7}{2} )}</p><p>

Now,

 \mathsf{Area \: of \: Triangle \: ADE = </p><p>}

 \implies  \mathsf{ \frac{1}{2}   \times 6(3 -  \frac{7}{2} ) + 7( \frac{7}{2}  - 1) + 8(1 - 3) }

 \implies  \mathsf{ |  - \frac{  3}{4} | }

 \implies \: \mathsf{ \frac{3}{4} }

\boxed{\mathsf{Answer \ :- {\blue \ {Area \ of \ Triangle= \frac{3}{4}}}}}

Similar questions