If a=6-√35, find the value of a²+1/a²
I WILL MARK AS BRAINLIEST
Answers
Given :-
- a = ( 6 - √35)
To Find :-
- (a² + 1/a²) = ?
Solution :-
→ a = 6 - √35 ---------- Equation (1)..
→ 1/a = 1/(6 - √35)
Rationalising the RHS part we get,
→ 1/a = 1/(6 - √35) * [ (6 + √35) / (6 - √35) ]
Now, using (a + b)(a - b) = a² - b² in Denominator, we get,
→ 1/a = (6 + √35) / [ (6)² - (√35)²]
→ 1/a = (6 + √35) / (36 - 35)
→ 1/a = (6 + √35) / 1
→ 1/a = (6 + √35) --------- Equation (2).
Adding Equation (1) & (2), we get,
→ (a + 1/a) = (6 - √35) + (6 + √35)
→ (a + 1/a) = 6 + 6
→ (a + 1/a) = 12
Squaring Both sides now, we get,
→ (a + 1/a)² = 12²
using (a + b)² = a² + b² + 2ab in LHS, we get,
→ a² + 1/a² + 2 * a * 1/a = 144
→ (a² + 1/a²) + 2 = 144
→ (a² + 1/a²) = 144 - 2
→ (a² + 1/a²) = 142 (Ans.)
Similar Question :-
https://brainly.in/question/17100497 .
Given
Value of a = 6 - √35
To find
Value of (a² + 1/a²)
Solution
Here, a = 6 - √35
⇒ 1/a = 1/(6 - √35)
⇒ 1/a = (6 + √35)/[(6 + √35)(6 - √35)]
[By multiplying (6 + √35) in both numerator & denominator]
⇒ 1/a = (6 + √35)/(6² - (√35)²)
⇒ 1/a = (6 + √35)(36 - 35)
⇒ 1/a = (6 + √35)/1
⇒ 1/a = 6 + √35
Now we have to find value of a² + 1/a²
⇒ a² + 1/a²= (a)² + (1/a)²
⇒(6 - √35)² + (6 + √35)²
⇒ (6² - 2 × 6√35 + 35) + (6² + 2 × 6√35 + 35)
⇒ 36 - 12√35 + 35 + 36 + 12√35 + 35
⇒ 72 + 70
⇒ 142
Therefore,