Math, asked by EliteSoul, 11 months ago

if a^6+b^6-c^6+3a^2b^2c^2=0,then prove that a^2+b^2=c^2​

Answers

Answered by BendingReality
47

Answer:

\displaystyle \sf \longrightarrow (a^2+b^2)=(c^2) \ [ \ Proved \ ] \\

Step-by-step explanation:

Given :

\displaystyle \sf a^6+b^6-c^6+3 \ a^2.b^2.c^2=0 \\ \\

We have to prove :

\displaystyle \sf a^2+b^2=c^2 \\ \\

Rewrite the given as :

\displaystyle \sf a^6+b^6+3 \ a^2.b^2.c^2=c^6 \\ \\

On solving it further :

\displaystyle \sf \longrightarrow (a^2)^3+(b^2)^3+3 \ (a^2.b^2).c^2=(c^2)^3 \\ \\

Putting :

\displaystyle \sf \longrightarrow c^2=a^2+b^2 \\ \\

\displaystyle \sf \longrightarrow (a^2)^3+(b^2)^3+3 \ (a^2.b^2).(a^2+b^2)=(c^2)^3 \\ \\

Using identity :

\displaystyle \sf \longrightarrow x^3+y^3+3 \ xy.(x+y)= (x+y)^3 \\ \\

\displaystyle \sf \longrightarrow (a^2+b^2)^3=(c^2)^3 \\ \\

Taking cube root both side we get :

\displaystyle \sf \longrightarrow \left[(a^2+b^2)^3\right]^{1/3}=\left[(c^2)^3\right]^{1/3} \\ \\

\displaystyle \sf \longrightarrow (a^2+b^2)=(c^2) \\ \\

Hence proved.

Answered by Anonymous
20

Answer:

<marquee behavior ="move"/><h1>This is your answer mate</h1>

Attachments:
Similar questions