Math, asked by nickkibts, 9 months ago

if a= 6 - rt35, find the value of a^3 + 1/a^2​

Answers

Answered by sakshisingh27
1

Answer:

a = (6 - sqrt 35)

a + 1/a

= (6 - sqrt 35) + 1/(6 - sqrt 35)

= ((6 - sqrt 35)^2 + 1) / (6 - sqrt 35)

= (36 -12 sqrt 35 + 35 +1) / (6 - sqrt 35)

= (72 -12 sqrt 35) / (6 - sqrt 35)

= 12 * (6 - sqrt 35) / (6 - sqrt 35)

= 12

=> a + 1 / a = 12 --- (1)

a^2 + 1 / a^2

= (a + 1/a)^2 - 2

= 12^2 - 2 --- from Eq[1]

= 144 - 2

= 142

=> a^2 + 1/a^2 = 142

Step-by-step explanation:

<b><body bgcolor=white><marquee scrollamount="3" direction="left"><font color=red, black></b>hello ..✌

hope it will be helpful to

Answered by deepikajanta1234
7

Answer:

Assuming you mean a^2 - (1/a)^2, this is

(6 - √35)^2 + (1 / (6 - √35))^2

(36 - 12√35 + 35) + (1 / (36 - 12√35 + 35))

(71 - 12√35) + (1 / (71 - 12√35))

(71 - 12√35) + [ (71+12√35) / (71 - 12√35)(71+12√35) ]

(71 - 12√35) + [ (71+12√35) / (5041 - 5040) ]

(71 - 12√35) + (71+12√35)

142

hope it helps you. :D

nicckibts!!!!!!

Similar questions