Chemistry, asked by jenilbhat18, 9 months ago

If a 60 watt lamp emits monochromatic
radiation of wavelength 6625 Å, then the
number of photons emitted per second by
the lamp is (h = 6.625 x 10-34 Js)​

Answers

Answered by rusheelmehta
2

Answer:Is 20 number of photons passed per second

Explanation:By E=Nhv

E=Nhv/lembda

E×lembda/hv

Hope you like...

Mark as a brainliest

Answered by hipsterizedoll410
7

Answer: 5×10⁻²⁰

Given:

\sf Power\:of\:the\:lamp\:(P)=60\:W

\sf Wavelength\:of\:the\:lamp(\lambda)=6625\AA=6625\times10^{-10}=6.625\times10^{-7}m

\sf Planck's\:constant(h)=6.625\times 10^{-34}Js

To find:

\sf Number\:of\:photons\:emitted\:per\:second\:by\:the\:lamp(n).

Formula used:

\sf\bullet \boxed{\sf Energy\:of\:photon(E)=Planck's\:constant(h)\times Frequency(\nu)}

\bullet\boxed{\sf Power(P)=Number\:of\:photons\:emitted\:per\:second(n)\times Energy\:of\:photon(E)}

Explanation:

\sf We\:know\:that,

\sf Speed\:of\:light\:in\:vaccum(c)=\lambda \nu

\Rightarrow \sf\nu=\dfrac{c}{\lambda}\quad\quad\quad (where\:c=3\times 10^{8})

\sf Substituting\:the\:value\:of\:\nu\:in\:the\:formula,we\:get:

\boxed{\sf E=\dfrac{hc}{\lambda}}

\sf Now, substituting\:the\:values\:in\:the\:above\:formula,we\:get:

\Rightarrow \sf E=\dfrac{ (6.625\times 10^{-34})\times (3\times 10^{8})}{6.625\times 10^{-7}}

\Rightarrow \sf E= 10^{-27}\times 3\times 10^{8}

\Rightarrow \sf E= 3\times 10^{-19}

\sf Again\:substituting\:the\:values\:in\:the\:formula,we\:get:

\Rightarrow\sf 60=n\times( 3\times 10^{-19})

\Rightarrow\sf n=\dfrac{ 3\times 10^{-19}}{60}=\dfrac{ 1\times 10^{-19}}{20}=0.05\times 10^{-19}

\Rightarrow\boxed{\sf n=5\times 10^{-20}\:photons\:per\:second}

Therefore,the  number of photons emitted per second by

the lamp is 5×10⁻²⁰.

Similar questions