Math, asked by shernitha2077vmjscho, 6 months ago

If A = 60° and B = 30°, prove that :
(i) sin (A + B) = sin A cos B + cos A sin B.
(ii) cos (A + B) = cos A cos B - sin A sin B.
(iii) cos (A - B) = cos A cos B + sin A sin B.
tan A-tan B
(iv) tan (A - B) =tanA -tan B /
1+tan A tan B​

Answers

Answered by kulkarninishant346
1

Step-by-step explanation:

Hey mate !!

Here's your answer !!

Given :

A = 60° , B = 30°

To verify :

Sin ( A - B ) = Sin A . Cos B - Cos A . Sin B

Proof :

Let's substitute the values of A and B directly in the equation that is required for verification.

= Sin ( 60 - 30 ) = Sin 60 . Cos 30 - Cos 60 . Sin 30

= Sin 30 = Sin 60 . Cos 30 - Cos 60 . Sin 30 -----( Eqn. 1 )

We know that,

Sin 30 = 1 / 2

Sin 60 = √ 3 / 2

Cos 30 = √ 3 / 2

Cos 60 = 1 / 2

Now let's substitute the values in Equation 1.

=> 1 / 2 = √ 3 / 2 * √ 3 / 2 - 1 / 2 * 1 / 2

=> 1 / 2 = ( √ 3 / 2 )² - ( 1 / 2 )²

=> 1 / 2 = ( 3 / 4 - 1 / 4 )

=> 1 / 2 = ( 2 / 4 )

=> 1 / 2 = 1 / 2

Hence LHS = RHS

Hence verified !!

Hope my answer helped you mate !!

Cheers !!

Answered by SandeepAW
0

Answer:

(i) sin(A+B)=sinA cosB+cosA sinB.

A=60° & B=30°.

sin(60°+30°)=sin60° cos30°+cos60° sin30°.

sin60°=√3/2.

cos30°=√3/2.

cos60°=1/2.

sin30°=1/2.

sin(90°)=√3/2 √3/2+ 1/2 1/2.

sin90°=1.

1=(√3/2)²+(1/2)².

1=3/4+1/4.

1=3+1/4.

1=4/4.

1=1.

(ii) cos(A+B)=cosA cosB-sinA sinB.

A=60° & B=30°.

cos(60°+30°)=cos60° cos30°-sin60° sin60°.

cos60°=1/2.

cos30°=√3/2.

sin60°=√3/2.

sin30°=1/2.

cos(90°)=1/2 √3/2-√3/2 1/2.

cos(90°)=0.

0=√3/4-√3/4.

0=0.

Sorry I didn't understand other two questions.

Similar questions