Math, asked by umashankarsharm2019, 4 days ago

If A ( 7, 10), B( -2, k) and C(3, -4) are vertices of a right angled triangle at B, then k=

Answers

Answered by rajsudhir8995
0

Answer:

1

Step-by-step explanation:

Given that, In right triangle, ABC, right angled at B,

Coordinates of A is (7, 10)

Coordinates B is (- 2, k)

Coordinates of C is (3, - 4)

So, using Pythagoras Theorem, we have

\begin{gathered}\rm \: {AB}^{2} + {BC}^{2} = {AC}^{2} \\ \end{gathered}

AB

2

+BC

2

=AC

2

So, using Distance formula, we get

\begin{gathered}\rm \: {(7 + 2)}^{2} + {(10 - k)}^{2} + {( - 2 - 3)}^{2} + {(k + 4)}^{2} = {(7 - 3)}^{2} + {(10 + 4)}^{2} \\ \end{gathered}

(7+2)

2

+(10−k)

2

+(−2−3)

2

+(k+4)

2

=(7−3)

2

+(10+4)

2

\begin{gathered}\rm \: 81 + {(10 - k)}^{2} + 25 + {(k + 4)}^{2} = 16 + 196 \\ \end{gathered}

81+(10−k)

2

+25+(k+4)

2

=16+196

\begin{gathered}\rm \: 106 + {(10 - k)}^{2} + {(k + 4)}^{2} = 212 \\ \end{gathered}

106+(10−k)

2

+(k+4)

2

=212

\begin{gathered}\rm \: {(10 - k)}^{2} + {(k + 4)}^{2} = 106 \\ \end{gathered}

(10−k)

2

+(k+4)

2

=106

\begin{gathered}\rm \: 100 + {k}^{2} - 20k + {k}^{2} + 16 + 8k = 106 \\ \end{gathered}

100+k

2

−20k+k

2

+16+8k=106

\begin{gathered}\rm \: 2{k}^{2} + 116 - 12k = 106 \\ \end{gathered}

2k

2

+116−12k=106

\begin{gathered}\rm \: 2{k}^{2} + 116 - 12k - 106 = 0\\ \end{gathered}

2k

2

+116−12k−106=0

\begin{gathered}\rm \: 2{k}^{2} - 12k + 10 = 0\\ \end{gathered}

2k

2

−12k+10=0

\begin{gathered}\rm \: 2({k}^{2} - 6k + 5) = 0\\ \end{gathered}

2(k

2

−6k+5)=0

\begin{gathered}\rm \:{k}^{2} - 6k + 5 = 0\\ \end{gathered}

k

2

−6k+5=0

\begin{gathered}\rm \:{k}^{2} - 5k - k + 5 = 0\\ \end{gathered}

k

2

−5k−k+5=0

\begin{gathered}\rm \: k(k - 5) - 1(k - 5) = 0 \\ \end{gathered}

k(k−5)−1(k−5)=0

\begin{gathered}\rm \: (k - 5)(k - 1) = 0 \\ \end{gathered}

(k−5)(k−1)=0

\begin{gathered}\rm\implies \:k \: = \: 5 \: \: or \: \: k \: = \: 1 \\ \end{gathered}

⟹k=5ork=1

Similar questions