if a=7-4√3,find the value of √a+1/√a.
Answers
Answered by
17
a = 7 - 4root3-----(1)
1/a = 1/(7-4root3)
=(7+4root3)/(7-4root3)(7+4root3)
= (7+4root3)/(49-48)
= 7+4root3-----(2)
(root a + 1/root a)^2 = a+1/a + 2*a*1/a
= 7- 4root 3 +7+4 root3+2[from (1) and (2)]
=14
(root a+1/ root a) = root 14
1/a = 1/(7-4root3)
=(7+4root3)/(7-4root3)(7+4root3)
= (7+4root3)/(49-48)
= 7+4root3-----(2)
(root a + 1/root a)^2 = a+1/a + 2*a*1/a
= 7- 4root 3 +7+4 root3+2[from (1) and (2)]
=14
(root a+1/ root a) = root 14
Answered by
33
Answer :
4
Step-by-step explanation :
Find the value of √a :
a = 7 - 4√3
a = 4 + 3 - 4√3
a = (2)² + (√3)² - 2 * 2 * √3
a = ( 2 - √3 )²
By rooting both the sides
√a = √(2 - √3)²
√a = 2 - √3
Find the value of 1 / √a :
√a = 2 - √3
1 / √a = 1 / 2 - √3
1 / √a = 1 / 2 - √3 * 2 + √3 / 2 + √3
1 / √a = 2 + √3 / 2² - √3²
1 / √a = 2 + √3 / 4 - 3
1 / √a = 2 + √3
Find √a + 1 / √a :
√a + 1 / √a = 2 - √3 + 2 + √3
√a + 1 / √a = 2 + 2
√a + 1 / √a = 4
Hence, the answer is 4.
Similar questions