Math, asked by puneetpotdar, 1 month ago

If a = 7-4/3 , then the value of a +1/a is__​

Answers

Answered by sameergupta102010
1

Answer:

The given value of a is 7-4 \sqrt{3}7−4

3

And the value of \frac{1}{a} \text { is } 7+4 \sqrt{3}

a

1

is 7+4

3

Then,

\begin{gathered}\begin{array}{c}{a+\frac{1}{a}=7-4 \sqrt{3}+7+4 \sqrt{3}} \\ {a+\frac{1}{a}=14}\end{array}\end{gathered}

a+

a

1

=7−4

3

+7+4

3

a+

a

1

=14

Now to find the value of \sqrt{a}+\frac{1}{\sqrt{a}}

a

+

a

1

,

By using the formula of (a+b)^{2}=a^{2}+b^{2}+2 a b(a+b)

2

=a

2

+b

2

+2ab

Then, applying the (a+b)^{2}(a+b)

2

formula to \sqrt{a}+\frac{1}{\sqrt{a}}

a

+

a

1

We can get,

\begin{gathered}\begin{array}{c}{\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=(\sqrt{a})^{2}+\left(\frac{1}{\sqrt{a}}\right)^{2}+\left(2 \times \sqrt{a} \times \frac{1}{\sqrt{a}}\right)} \\ {\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=a+\frac{1}{a}+2}\end{array}\end{gathered}

(

a

+

a

1

)

2

=(

a

)

2

+(

a

1

)

2

+(2×

a

×

a

1

)

(

a

+

a

1

)

2

=a+

a

1

+2

Already we know the value of a+\frac{1}{a}a+

a

1

is 14

\begin{gathered}\begin{array}{c}{\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=14+2} \\ {\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}=16}\end{array}\end{gathered}

(

a

+

a

1

)

2

=14+2

(

a

+

a

1

)

2

=16

By taking square root for the value of \left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^{2}(

a

+

a

1

)

2

, we can get the value of \sqrt{a}+\frac{1}{\sqrt{a}}

a

+

a

1

\begin{gathered}\begin{array}{l}{\sqrt{a}+\frac{1}{\sqrt{a}}=\sqrt{16}} \\ {\sqrt{a}+\frac{1}{\sqrt{a}}=4}\end{array}\end{gathered}

a

+

a

1

=

16

a

+

a

1

=4

Then the value of \bold{\sqrt{a}+\frac{1}{\sqrt{a}}}

a

+

a

1

is 4, if the value of a is 7-4 \sqrt{3}7−4

3

.

Answered by james7389
1

Step-by-step explanation:

a = 7-4/3

a = 3/3 = 1

So, a=1

a+1/a

= 1+1/1

=2/1

=2

Similar questions