Math, asked by iqbalnasir9548, 1 year ago

if a=7+√40 find thevalue of √a+1/√a with solution

Answers

Answered by lublana
0

We just plug values of a into √a+1/√a then simplify

 \sqrt{a}+\frac{1}{\sqrt{a}}

 =\sqrt{7+\sqrt{40}}+\frac{1}{\sqrt{7+\sqrt{40}}}

 =\sqrt{7+\sqrt{40}}*\frac{\sqrt{7+\sqrt{40}}}{\sqrt{7+\sqrt{40}}}+\frac{1}{\sqrt{7+\sqrt{40}}}

 =\frac{7+\sqrt{40}}{\sqrt{7+\sqrt{40}}}+\frac{1}{\sqrt{7+\sqrt{40}}}

 =\frac{7+\sqrt{40}+1}{\sqrt{7+\sqrt{40}}}

 =\frac{8+\sqrt{40}}{\sqrt{7+\sqrt{40}}}

So the final answer is  =\frac{8+\sqrt{40}}{\sqrt{7+\sqrt{40}}} .

If you want denominator to be radical free in answer then you can proceed with rationalization method.

Answered by ishwarsinghdhaliwal
0

a = 7 +  \sqrt{40}   = 7 + 2 \sqrt{10}  = 5 + 2 + 2 \sqrt{10}  = ( \sqrt{5}  +  \sqrt{2} ) ^{2}  \\  \sqrt{a}  =  \sqrt{5}  +  \sqrt{2}  \\  \frac{1}{ \sqrt{a} }  =  \frac{1}{ \sqrt{5}  +  \sqrt{2} }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -   \sqrt{2} }  =  \frac{ \sqrt{5} -  \sqrt{2}  }{( \sqrt{5})^{2}   -( \sqrt{2}) ^{2}   }  =  \frac{ \sqrt{5}  -  \sqrt{2} }{5 - 2}  =  \frac{ \sqrt{5} -  \sqrt{2}  }{3}  \\ now \\  \sqrt{a}  +  \frac{1}{ \sqrt{a} }  =  \sqrt{5}   + \sqrt{2}  +   \frac{\sqrt{5}  -  \sqrt{2}}{3}   =  \frac{3 \sqrt{5} + 3 \sqrt{2}   +  \sqrt{5} -  \sqrt{2}  }{3}  =  \frac{4 \sqrt{5}  + 2 \sqrt{2} }{3}
Similar questions