Math, asked by mmcian, 1 year ago

if a =√7-√6/ √7+√6 and b=√7+√6/√7-√6 then find a^2+b^2+ab

Answers

Answered by MakutoShiedo
43
Hey!! Here's the solution :D

a = (√7 - √6) / (√7 + √6)

(Rationalize the denominator )

a = (√7 - √6)² / (√7 + √6)( √7 - √6)

= 7 + 6 - 2√42

= 13 - 2√42

b = (√7 + √6) / (√7 - √6)

= (√7 + √6)² / (√7 - √6)( √7 + √6)

= 13 + 2√42

Now substitute the values in the given equation ; i.e., a² + b² + ab

= (13 - 2√42)² + (13 + 2√42)² + (13 - 2√42)(13 + 2√42)

= (169 + 168 - 52√42) + (169 + 168 + 52√42) + (169 + 168)

= 1011

Ans. = 1011

Hope it helps! ^^
Answered by Anonymous
12

\huge\red{\underline{{\bf A }}} \: \huge\orange{\underline{{\bf n }}} \: \huge\green{\underline{{\bf s }}} \huge\blue{\underline{{\bf w }}} \: \huge\purple{\underline{{\bf e }}} \huge\pink{\underline{{\bf r}}}

a = (√7 - √6) / (√7 + √6)

(Rationalize the denominator )

a = (√7 - √6)² / (√7 + √6)( √7 - √6)

= 7 + 6 - 2√42

= 13 - 2√42

b = (√7 + √6) / (√7 - √6)

= (√7 + √6)² / (√7 - √6)( √7 + √6)

= 13 + 2√42

Now substitute the values in the given equation ; i.e., a² + b² + ab

= (13 - 2√42)² + (13 + 2√42)² + (13 - 2√42)(13 + 2√42)

= (169 + 168 - 52√42) + (169 + 168 + 52√42) + (169 + 168)

= 1011

Similar questions