if a =√7-√6/ √7+√6 and b=√7+√6/√7-√6 then find a^2+b^2+ab
Answers
Answered by
43
Hey!! Here's the solution :D
a = (√7 - √6) / (√7 + √6)
(Rationalize the denominator )
a = (√7 - √6)² / (√7 + √6)( √7 - √6)
= 7 + 6 - 2√42
= 13 - 2√42
b = (√7 + √6) / (√7 - √6)
= (√7 + √6)² / (√7 - √6)( √7 + √6)
= 13 + 2√42
Now substitute the values in the given equation ; i.e., a² + b² + ab
= (13 - 2√42)² + (13 + 2√42)² + (13 - 2√42)(13 + 2√42)
= (169 + 168 - 52√42) + (169 + 168 + 52√42) + (169 + 168)
= 1011
Ans. = 1011
Hope it helps! ^^
a = (√7 - √6) / (√7 + √6)
(Rationalize the denominator )
a = (√7 - √6)² / (√7 + √6)( √7 - √6)
= 7 + 6 - 2√42
= 13 - 2√42
b = (√7 + √6) / (√7 - √6)
= (√7 + √6)² / (√7 - √6)( √7 + √6)
= 13 + 2√42
Now substitute the values in the given equation ; i.e., a² + b² + ab
= (13 - 2√42)² + (13 + 2√42)² + (13 - 2√42)(13 + 2√42)
= (169 + 168 - 52√42) + (169 + 168 + 52√42) + (169 + 168)
= 1011
Ans. = 1011
Hope it helps! ^^
Answered by
12
a = (√7 - √6) / (√7 + √6)
(Rationalize the denominator )
a = (√7 - √6)² / (√7 + √6)( √7 - √6)
= 7 + 6 - 2√42
= 13 - 2√42
b = (√7 + √6) / (√7 - √6)
= (√7 + √6)² / (√7 - √6)( √7 + √6)
= 13 + 2√42
Now substitute the values in the given equation ; i.e., a² + b² + ab
= (13 - 2√42)² + (13 + 2√42)² + (13 - 2√42)(13 + 2√42)
= (169 + 168 - 52√42) + (169 + 168 + 52√42) + (169 + 168)
= 1011
Similar questions